Skip to main content

Enhanced Accuracy and Robustness via Multi-teacher Adversarial Distillation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Abstract

Adversarial training is an effective approach for improving the robustness of deep neural networks against adversarial attacks. Although bringing reliable robustness, adversarial training (AT) will reduce the performance of identifying clean examples. Meanwhile, Adversarial training can bring more robustness for large models than small models. To improve the robust and clean accuracy of small models, we introduce the Multi-Teacher Adversarial Robustness Distillation (MTARD) to guide the adversarial training process of small models. Specifically, MTARD uses multiple large teacher models, including an adversarial teacher and a clean teacher to guide a small student model in the adversarial training by knowledge distillation. In addition, we design a dynamic training algorithm to balance the influence between the adversarial teacher and clean teacher models. A series of experiments demonstrate that our MTARD can outperform the state-of-the-art adversarial training and distillation methods against various adversarial attacks. Our code is available at https://github.com/zhaoshiji123/MTARD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 484–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_29

    Chapter  Google Scholar 

  2. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: International Conference on Machine Learning, pp. 274–283. PMLR (2018)

    Google Scholar 

  3. Bai, Y., Zeng, Y., Jiang, Y., Xia, S.T., Ma, X., Wang, Y.: Improving adversarial robustness via channel-wise activation suppressing. arXiv preprint arXiv:2103.08307 (2021)

  4. Bhagoji, A.N., He, W., Li, B., Song, D.: Practical black-box attacks on deep neural networks using efficient query mechanisms. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 158–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_10

    Chapter  Google Scholar 

  5. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  6. Chen, P.Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.J.: Zoo: zeroth order optimization based black-box attacks to deep neural networks without training substitute models. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26 (2017)

    Google Scholar 

  7. Chen, T., Zhang, Z., Liu, S., Chang, S., Wang, Z.: Robust overfitting may be mitigated by properly learned smoothening. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: International Conference on Machine Learning, pp. 2206–2216. PMLR (2020)

    Google Scholar 

  9. Demontis, A., et al.: Why do adversarial attacks transfer? explaining transferability of evasion and poisoning attacks. In: 28th USENIX Security Symposium (USENIX Security 19), pp. 321–338 (2019)

    Google Scholar 

  10. Deng, J., Pan, Y., Yao, T., Zhou, W., Li, H., Mei, T.: Relation distillation networks for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7023–7032 (2019)

    Google Scholar 

  11. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1625–1634 (2018)

    Google Scholar 

  12. Goldblum, M., Fowl, L., Feizi, S., Goldstein, T.: Adversarially robust distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3996–4003 (2020)

    Google Scholar 

  13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  14. Gowal, S., Qin, C., Uesato, J., Mann, T., Kohli, P.: Uncovering the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint arXiv:2010.03593 (2020)

  15. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International Conference on Machine Learning, pp. 1737–1746. PMLR (2015)

    Google Scholar 

  16. Gürel, N.M., Qi, X., Rimanic, L., Zhang, C., Li, B.: Knowledge enhanced machine learning pipeline against diverse adversarial attacks. In: International Conference on Machine Learning, pp. 3976–3987. PMLR (2021)

    Google Scholar 

  17. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Huang, Q., Katsman, I., He, H., Gu, Z., Belongie, S., Lim, S.N.: Enhancing adversarial example transferability with an intermediate level attack. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4733–4742 (2019)

    Google Scholar 

  20. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  21. Javanmard, A., Soltanolkotabi, M., Hassani, H.: Precise tradeoffs in adversarial training for linear regression. In: Conference on Learning Theory, pp. 2034–2078. PMLR (2020)

    Google Scholar 

  22. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  23. Kumar, R.S.S., et al.: Adversarial machine learning-industry perspectives. In: 2020 IEEE Security and Privacy Workshops (SPW), pp. 69–75. IEEE (2020)

    Google Scholar 

  24. Liu, Y., Chen, X., Liu, C., Song, D.: Delving into transferable adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770 (2016)

  25. Ma, X., et al.: Characterizing adversarial subspaces using local intrinsic dimensionality. arXiv preprint arXiv:1801.02613 (2018)

  26. Ma, X.: Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recogn. 110, 107332 (2021)

    Article  Google Scholar 

  27. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  28. Mao, H., et al.: Exploring the regularity of sparse structure in convolutional neural networks. arXiv preprint arXiv:1705.08922 (2017)

  29. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 372–387. IEEE (2016)

    Google Scholar 

  30. Raghunathan, A., Xie, S.M., Yang, F., Duchi, J., Liang, P.: Understanding and mitigating the tradeoff between robustness and accuracy. arXiv preprint arXiv:2002.10716 (2020)

  31. Rice, L., Wong, E., Kolter, Z.: Overfitting in adversarially robust deep learning. In: International Conference on Machine Learning, pp. 8093–8104. PMLR (2020)

    Google Scholar 

  32. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  33. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for natural language understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 22(4), 778–784 (2014)

    Article  Google Scholar 

  34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  35. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  36. Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., Lin, J.: Distilling task-specific knowledge from bert into simple neural networks. arXiv preprint arXiv:1903.12136 (2019)

  37. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  38. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  39. Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., Gu, Q.: Improving adversarial robustness requires revisiting misclassified examples. In: International Conference on Learning Representations (2019)

    Google Scholar 

  40. Wei, X., Yan, H., Li, B.: Sparse black-box video attack with reinforcement learning. Int. J. Comput. Vision 130(6), 1459–1473 (2022)

    Article  Google Scholar 

  41. Wu, B., Chen, J., Cai, D., He, X., Gu, Q.: Do wider neural networks really help adversarial robustness? Adv. Neural Inf. Process. Syst. 34, 7054–7067 (2021)

    Google Scholar 

  42. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  43. Yan, H., Wei, X.: Efficient sparse attacks on videos using reinforcement learning. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2326–2334 (2021)

    Google Scholar 

  44. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  45. Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482. PMLR (2019)

    Google Scholar 

  46. Zhang, T., Zhu, Z.: Interpreting adversarially trained convolutional neural networks. In: International Conference on Machine Learning, pp. 7502–7511. PMLR (2019)

    Google Scholar 

  47. Zhu, J., et al.: Reliable adversarial distillation with unreliable teachers. arXiv preprint arXiv:2106.04928 (2021)

  48. Zi, B., Zhao, S., Ma, X., Jiang, Y.G.: Revisiting adversarial robustness distillation: Robust soft labels make student better. In: International Conference on Computer Vision (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Key R &D Program of China (Grant No.2020AAA0104002) and the Project of the National Natural Science Foundation of China (No.62076018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, S., Yu, J., Sun, Z., Zhang, B., Wei, X. (2022). Enhanced Accuracy and Robustness via Multi-teacher Adversarial Distillation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics