Skip to main content

Rethinking Zero-shot Action Recognition: Learning from Latent Atomic Actions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Included in the following conference series:

Abstract

To avoid time-consuming annotating and retraining cycle in applying supervised action recognition models, Zero-Shot Action Recognition (ZSAR) has become a thriving direction. ZSAR requires models to recognize actions that never appear in training set through bridging visual features and semantic representations. However, due to the complexity of actions, it remains challenging to transfer knowledge learned from source to target action domains. Previous ZSAR methods mainly focus on mitigating representation variance between source and target actions through integrating or applying new action-level features. However, the action-level features are coarse-grained and make the learned one-to-one bridge fragile to similar target actions. Meanwhile, integration or application of features usually requires extra computation or annotation. These methods didn’t notice that two actions with different names may still share the same atomic action components. It enables humans to quickly understand an unseen action given bunch of atomic actions learned from seen actions. Inspired by this, we propose Jigsaw Network (JigsawNet) which recognizes complex actions through unsupervisedly decomposing them into combinations of atomic actions and bridging group to group relationships between visual features and semantic representations. To enhance the robustness of learned group-to-group bridge, we propose Group Excitation (GE) module to model intra-sample knowledge and Consistency Loss to enforce the model learn from inter-sample knowledge. Our JigsawNet achieves state-of-the-art performance on three benchmarks and surpasses previous works with noticeable margins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2015)

    Article  Google Scholar 

  2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2927–2936 (2015)

    Google Scholar 

  3. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)

    Google Scholar 

  4. Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K.: Rethinking zero-shot video classification: end-to-end training for realistic applications. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4613–4623 (2020)

    Google Scholar 

  5. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  6. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600. arXiv preprint arXiv:1808.01340 (2018)

  7. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  8. Chen, S., Huang, D.: Elaborative rehearsal for zero-shot action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13638–13647 (2021)

    Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Diba, A., et al.: Temporal 3d convnets using temporal transition layer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1117–1121 (2018)

    Google Scholar 

  12. Diba, A., et al.: Temporal 3d convnets: new architecture and transfer learning for video classification. arXiv preprint arXiv:1711.08200 (2017)

  13. Fan, L., et al.: Rubiksnet: learnable 3d-shift for efficient video action recognition. In: Proceedings of the European Conference on Computer Vision (ECCV) (2020)

    Google Scholar 

  14. Floridi, L., Chiriatti, M.: Gpt-3: Its nature, scope, limits, and consequences. Minds Mach. 30(4), 681–694 (2020)

    Article  Google Scholar 

  15. Frome, A., et al.: Devise: a deep visual-semantic embedding model. Adv. Neural Inf. Process. Syst. 26 (2013)

    Google Scholar 

  16. Gan, C., Lin, M., Yang, Y., De Melo, G., Hauptmann, A.G.: Concepts not alone: exploring pairwise relationships for zero-shot video activity recognition. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  17. Gao, J., Zhang, T., Xu, C.: I know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8303–8311 (2019)

    Google Scholar 

  18. Ghadiyaram, D., Tran, D., Mahajan, D.: Large-scale weakly-supervised pre-training for video action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12046–12055 (2019)

    Google Scholar 

  19. Ghosh, P., Saini, N., Davis, L.S., Shrivastava, A.: All about knowledge graphs for actions. arXiv preprint arXiv:2008.12432 (2020)

  20. Guo, M., Chou, E., Huang, D.A., Song, S., Yeung, S., Fei-Fei, L.: Neural graph matching networks for fewshot 3d action recognition. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 653–669 (2018)

    Google Scholar 

  21. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3d CNNs retrace the history of 2d CNNs and imagenet? In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  22. Jain, M., Van Gemert, J.C., Mensink, T., Snoek, C.G.: Objects2action: classifying and localizing actions without any video example. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4588–4596 (2015)

    Google Scholar 

  23. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  24. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  25. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29

    Chapter  Google Scholar 

  26. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Proceedings of the International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  27. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)

    Google Scholar 

  28. Lin, J., Gan, C., Han, S.: Tsm: temporal shift module for efficient video understanding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  29. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: CVPR 2011, pp. 3337–3344. IEEE (2011)

    Google Scholar 

  30. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  31. Mandal, D., et al.: Out-of-distribution detection for generalized zero-shot action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9985–9993 (2019)

    Google Scholar 

  32. Qian, Y., Kang, G., Yu, L., Liu, W., Hauptmann, A.G.: Trm: temporal relocation module for video recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 151–160 (2022)

    Google Scholar 

  33. Qin, J., et al.: Zero-shot action recognition with error-correcting output codes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2833–2842 (2017)

    Google Scholar 

  34. Shao, H., Qian, S., Liu, Y.: Temporal interlacing network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11966–11973 (2020)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  36. Smaira, L., Carreira, J., Noland, E., Clancy, E., Wu, A., Zisserman, A.: A short note on the kinetics-700-2020 human action dataset. arXiv preprint arXiv:2010.10864 (2020)

  37. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  38. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  39. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  41. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  42. Wang, Q., Chen, K.: Alternative semantic representations for zero-shot human action recognition. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 87–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_6

    Chapter  Google Scholar 

  43. Xu, X., Hospedales, T., Gong, S.: Semantic embedding space for zero-shot action recognition. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 63–67. IEEE (2015)

    Google Scholar 

  44. Xu, X., Hospedales, T., Gong, S.: Transductive zero-shot action recognition by word-vector embedding. Int. J. Comput. Vision 123(3), 309–333 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xu, X., Hospedales, T.M., Gong, S.: Multi-task zero-shot action recognition with prioritised data augmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 343–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_22

    Chapter  Google Scholar 

  46. Zellers, R., Choi, Y.: Zero-shot activity recognition with verb attribute induction. arXiv preprint arXiv:1707.09468 (2017)

  47. Zhang, H., Hao, Y., Ngo, C.W.: Token shift transformer for video classification. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 917–925 (2021)

    Google Scholar 

  48. Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2021–2030 (2017)

    Google Scholar 

  49. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 803–818 (2018)

    Google Scholar 

  50. Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9436–9445 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Defence Science and Technology Agency (DSTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, Y., Yu, L., Liu, W., Hauptmann, A.G. (2022). Rethinking Zero-shot Action Recognition: Learning from Latent Atomic Actions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics