Skip to main content

Order Learning Using Partially Ordered Data via Chainization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13673))

Included in the following conference series:

  • 1889 Accesses

Abstract

We propose the chainization algorithm for effective order learning when only partially ordered data are available. First, we develop a binary comparator to predict missing ordering relations between instances. Then, by extending the Kahn’s algorithm, we form a chain representing a linear ordering of instances. We fine-tune the comparator over pseudo pairs, which are sampled from the chain, and then re-estimate the linear ordering alternately. As a result, we obtain a more reliable comparator and a more meaningful linear ordering. Experimental results show that the proposed algorithm yields excellent rank estimation performances under various weak supervision scenarios, including semi-supervised learning, domain adaptation, and bipartite cases. The source codes are available at https://github.com/seon92/Chainization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barsoum, E., Zhang, C., Ferrer, C.C., Zhang, Z.: Training deep networks for facial expression recognition with crowd-sourced label distribution. In: ICMI (2016)

    Google Scholar 

  2. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a "Siamese" time delay neural network. In: NIPS (1993)

    Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT press (2009)

    Google Scholar 

  4. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(2), 262–268 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Diaz, R., Marathe, A.: Soft labels for ordinal regression. In: CVPR (2019)

    Google Scholar 

  6. Jech, T.J.: The Axiom of Choice. Courier Corporation (2008)

    Google Scholar 

  7. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)

    Article  MATH  Google Scholar 

  8. Knuth, D.E., Szwarcfiter, J.L.: A structured program to generate all topological sorting arrangements. Inf. Process. Lett. 2(6), 153–157 (1974)

    Article  MATH  Google Scholar 

  9. Lee, S.H., Kim, C.S.: Deep repulsive clustering of ordered data based on order-identitiy decomposition. In: ICLR (2021)

    Google Scholar 

  10. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: CVPR Workshops (2015)

    Google Scholar 

  11. Li, W., Huang, X., Lu, J., Feng, J., Zhou, J.: Learning probabilistic ordinal embeddings for uncertainty-aware regression. In: CVPR (2021)

    Google Scholar 

  12. Lim, K., Shin, N.H., Lee, Y.Y., Kim, C.S.: Order learning and its application to age estimation. In: ICLR (2020)

    Google Scholar 

  13. Liu, X., Li, S., Ge, Y., Ye, P., You, J., Lu, J.: Recursively conditional gaussian for ordinal unsupervised domain adaptation. In: ICCV (2021)

    Google Scholar 

  14. Liu, Y., Kong, A.W.K., Goh, C.K.: A constrained deep neural network for ordinal regression. In: CVPR (2018)

    Google Scholar 

  15. Liu, Y., Wang, F., Kong, A.W.K.: Probabilistic deep ordinal regression based on Gaussian processes. In: CVPR (2019)

    Google Scholar 

  16. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple output CNN for age estimation. In: CVPR (2016)

    Google Scholar 

  17. Pan, H., Han, H., Shan, S., Chen, X.: Mean-variance loss for deep age estimation from a face. In: CVPR (2018)

    Google Scholar 

  18. Parikh, D., Grauman, K.: Relative attributes. In: ICCV (2011)

    Google Scholar 

  19. Pearce, D.J., Kelly, P.H.: A dynamic topological sort algorithm for directed acyclic graphs. J. Exp. Algorithmics 11, 1–7 (2007)

    Article  MathSciNet  Google Scholar 

  20. Reingold, E.M., Nievergelt, J., Deo, N.: Combinatorial Algorithms: Theory and Practice. Prentice Hall (1977)

    Google Scholar 

  21. Ricanek, K., Tesafaye, T.: MORPH: A longitudinal image database of normal adult age-progression. In: FGR (2006)

    Google Scholar 

  22. Schifanella, R., Redi, M., Aiello, L.M.: An image is worth more than a thousand favorites: Surfacing the hidden beauty of Flickr pictures. In: ICWSM (2015)

    Google Scholar 

  23. Schröder, B.S.W.: Ordered Sets: An Introduction. Springer (2003)

    Google Scholar 

  24. Shin, N.H., Lee, S.H., Kim, C.S.: Moving window regression: a novel approach to ordinal regression. In: CVPR (2022)

    Google Scholar 

  25. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NIPS (2020)

    Google Scholar 

  26. Souri, Y., Noury, E., Adeli, E.: Deep relative attributes. In: ACCV (2016)

    Google Scholar 

  27. Tarjan, R.: Finding dominators in directed graphs. SIAM J. Comput. 3(1), 62–89 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, B., et al.: FlexMatch: boosting semi-supervised learning with curriculum pseudo labeling. In: NIPS (2021)

    Google Scholar 

  29. Zhang, Y., Liu, L., Li, C., Loy, C.C.: Quantifying facial age by posterior of age comparisons. In: BMVC (2017)

    Google Scholar 

  30. Zou, Y., Yang, X., Yu, Z., Kumar, B.V.K.V., Kautz, J.: Joint disentangling and adaptation for cross-domain person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 87–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the NRF grants funded by the Korea government (MSIT) (No. NRF-2021R1A4A1031864 and No. NRF-2022R1A2B5B03002310) and also by IITP grant funded by the Korea government (MSIT) (No. 2021-0-02068, Artificial Intelligence Innovation Hub).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Su Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4895 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, SH., Kim, CS. (2022). Order Learning Using Partially Ordered Data via Chainization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics