
Deep Hash Distillation for Image Retrieval

Young Kyun Jang1, Geonmo Gu2, Byungsoo Ko2, Isaac Kang1, and Nam Ik Cho1,3

1 ECE & INMC, Seoul National University, Korea
2 NAVER Vision

3 IPAI, Seoul National University, Korea
{kyun0914, korgm403, kobiso62}@gmail.com, {isaackang, nicho}@snu.ac.kr

Abstract. In hash-based image retrieval systems, degraded or transformed in-
puts usually generate different codes from the original, deteriorating the retrieval
accuracy. To mitigate this issue, data augmentation can be applied during train-
ing. However, even if augmented samples of an image are similar in real feature
space, the quantization can scatter them far away in Hamming space. This re-
sults in representation discrepancies that can impede training and degrade per-
formance. In this work, we propose a novel self-distilled hashing scheme to
minimize the discrepancy while exploiting the potential of augmented data. By
transferring the hash knowledge of the weakly-transformed samples to the strong
ones, we make the hash code insensitive to various transformations. We also
introduce hash proxy-based similarity learning and binary cross entropy-based
quantization loss to provide fine quality hash codes. Ultimately, we construct a
deep hashing framework that not only improves the existing deep hashing ap-
proaches, but also achieves the state-of-the-art retrieval results. Extensive ex-
periments are conducted and confirm the effectiveness of our work. Code is at
https://github.com/youngkyunJang/Deep-Hash-Distillation

Keywords: Large-scale Image Retrieval, Learning to Hash, Self-distillation

1 Introduction

Especially for retrieval from large-scale databases, hashing is essential due to its practi-
cality, i.e., high search speed and low storage cost. By converting high-dimensional data
points into compact binary codes with a hash function, the retrieval system can utilize a
simple bit-wise XOR operation to define a distance between the images. A wide variety
of works have been studied for learning to hash [41,15,43,33,38], and are still being
actively pursued to build fast and accurate retrieval systems.

Recently, techniques for hash learning have been significantly advanced by deep
learning, which is called deep hashing, and its corresponding works are in the spot-
light [1,20,11,42,29,39,50,46]. By integrating the hash function into the deep learning
framework, the image encoder and hash function are simultaneously learned to gener-
ate image hash codes. Regarding the training of deep hashing, the leading techniques
are pairwise similarity approaches that use sets of similar or dissimilar image pairs
[44,51,3,4,21,22], and global similarity in company with classification approaches that
use class labels assigned to images [23,24,47].

ar
X

iv
:2

11
2.

08
81

6v
2 

 [
cs

.C
V

] 
 1

3 
Ju

l 2
02

2

https://github.com/youngkyunJang/Deep-Hash-Distillation


2 Y. Jang et al.

0.7 0.6 -1.2 0.1

W
ea

k
ly

 -
T

ra
n

sf
o

rm
ed

1 -1 -1 1

0.8 0.5 -1.4 -0.1 1 -1 -1 -1

ℋ ∙ sign

O
ri

gi
n

al

1.0 0.8 -0.9 -1.1 1 -1 -1 -1

St
ro

n
gl

y
-

T
ra

n
sf

o
rm

ed

Hash code Binary code

large diff. of 1.0 same binary

small diff. of 0.2 different binary

Fig. 1: Visualization of possible problems in deep hashing due to transformations. The
continuous hash code generated by a deep hashing model H(·) is changed when the
input is transformed. In consequence, the binary code quantized with sign operation
can also be shifted. However, the degree of transformation cannot be properly reflected
in the quantized representation.

Since hash-based retrieval systems compute the distance between images with bi-
nary codes, corresponding codes need to be quantized with sign operation, from the
continuous real space to the discrete Hamming space of {−1, 1}. In this process, the
continuously optimized image representation is altered, and quantization error occurs,
which in turn degrades the discriminative capability of the hash code. This becomes
even more problematic when an input image is transformed and deviated from the orig-
inal distribution.

To avoid performance degradation due to transformations, the most common solu-
tion is to generalize the deep model by training it with augmented data having various
transformations. However, it is challenging to apply this augmentation strategy to deep
hash training since discrepancy in the representation may occur. Figure 1 shows an ex-
ample case that may appear: 1) The sign of the hash code can be shifted with a slight
change. Specifically, the last element of the weakly-transformed image’s hash code dif-
fers by 0.2 (−0.1 → 0.1) from the original, but it results in −1 → 1 shift in the
Hamming space. 2) The sign of the quantized hash code does not shift even with the big
change in the hash code. The last element of a strongly transformed image’s hash code
differs by 1.0 (−0.1 → −1.1) from the original, resulting in no shifts in the Hamming
space. Namely, the use of strong augmentation in deep hashing increases the discrep-
ancy between Hamming and real space, which hinders finding the optimal binary code.

To resolve this issue, we introduce a novel concept dubbed Self-distilled Hashing,
which customizes self-distillation [49,40,45,5,32] to prevent severe discrepancy in deep
hash training. Specifically, based on the understanding of the relation between cosine
distance and Hamming agreement [33,48,19], we minimize the cosine distance between
the hash codes of two different views (transformed results) of an image to maximize the
Hamming agreement between their binary outcomes. Further for stable learning, we



Deep Hash Distillation for Image Retrieval 3

separate the difficulties of transformations as easy and difficult, and transfer the hash
knowledge from easy to difficult, inspired by [8,40,5].

Moreover, we propose two additional training objectives that optimize hash codes
to enhance the self-distilled hashing: 1) a hash proxy-based similarity learning, and 2)
a binary cross entropy-based quantization loss. The first term allows the deep hashing
model to learn global (inter-class) discriminative hash codes with temperature-scaled
cosine similarity. The second term contributes to making the hash code naturally move
away from the binary threshold in a classification manner with likelihood estimators.

By combining all of our proposals, we construct a Deep Hash Distillation frame-
work (DHD), which yields discriminative and transformation resilient hash codes for
fast image retrieval. We conduct extensive experiments on single and multi-labeled
benchmark datasets for image hashing evaluation. In addition, we validate the effective-
ness of self-distilled hashing using data augmentation on the existing methods [4,3,14,47]
and show the performance improvements. Furthermore, we establish that DHD is ap-
plicable with a variety of deep backbone architectures including vision Transformers
[12,40,34]. Experimental results verify that self-distilled hashing strategy improves the
existing works, and entire DHD framework shows the best retrieval performance.

We can summarize our contributions as follows:

– To the best of our knowledge, this is the first work to address the discrepancy be-
tween real and Hamming space provoked by data augmentation in deep hashing.

– With the introduction of self-distilled hashing scheme and training loss functions,
we successfully embed the power of augmentations into the hash codes.

– Extensive experiments demonstrate the benefits of our work, improving previous
deep hashing methods and achieving the state-of-the-art performances.

2 Related Works

For a better understanding, we present a brief introduction to the deep hashing methods
and the research that inspired our proposal. Refer to a survey [41] to see details of the
early works in non-deep hashing approaches (ITQ [15], SH [43], KSH [33], SDH [38]).

Deep hashing methods. Hashing algorithms using deep learning techniques such as
Convolutional Neural Network (CNN) are leading the mainstream with striking results.
For example, CNNH [44] utilizes a CNN to generate compact hash codes by train-
ing a network with given pairwise label information. DHN [51] learns hash codes by
approximating discrete values with relaxation and trains them with supervised signals.
HashNet [4] adopts the inner product to measure pairwise similarity between hash codes
and tackles the data imbalance problem by employing weighted maximum likelihood
estimation. DCH [3] employs Cauchy distribution to minimize the Hamming distance
of the images with the same class label.

Hash center-based methods. There have been several methods to find out class-wise
hash representatives (centers), which can provide global similarity to hash codes by
including the process of predicting image class labels with hash codes during training
[23,24,21,47]. CSQ [47] uses pre-defined orthogonal binary hash targets to guarantee
a certain Hamming distance between classes and makes hash codes follow the targets.



4 Y. Jang et al.

Shared WeightsForward Self-distilled Hashing Signal Teacher Loss Signal

𝐻𝜃(∙)

⋯

FC

h𝑇

h𝑆

ℒ𝑆𝑑𝐻

Deep hashing model ℋ ∙ = 𝐻𝜃(𝐸𝜃 ∙ )

D
if

fi
cu

lt
St

u
d

en
t

E
as

y
T

ea
ch

er

⋯ ⋯

𝐸𝜃(∙)
CNN / Transformer

⋯ ⋯

𝐸𝜃(∙)
CNN / Transformer

෤𝑥𝑇= 𝑡𝑇(𝑥)

Teacher
Loss

Given image : 𝑥

Aug. groups: 𝒯𝑇 , 𝒯𝑆

෤𝑥𝑆= 𝑡𝑆(𝑥)

tanh(∙)

tanh(∙)

𝐻𝜃(∙)

⋯

FC

stop
grad

(a) Self-distilled hashing.

𝐺(∙)

𝑔+(∙)

𝑔−(∙)

𝑃𝜃(∙)

𝑝𝜃1 𝑝𝜃2 𝑝𝜃𝑁𝑐𝑙𝑠

⋯

h𝑇 ℒ𝑏𝑐𝑒−𝑄

ℒ𝐻𝑃

𝐺(∙)

𝑃𝜃(∙)

g𝑇
+ g𝑇

−

p𝑇

Hash Proxies

Gaussian Estimators

(b) Detailed Teacher loss.

Fig. 2: The overall training process of Deep Hash Distillation (DHD) framework. (a)
From two different augmentation groups, namely Teacher TT and Student TS , randomly
sampled transformations (tT ∼ TT , tS ∼ TS) are individually applied on the input
image x to produce x̃T and x̃S . The deep hashing model H(·) constructed with the deep
encoder Eθ(·) and the hash function Hθ(·) of Fully-Connected (FC) layers yields two
hash codes hT and hS which are learned with LSdH . We apply stop gradient operation
on hT for stable training. (b) Additionally, we employ trainable hash proxies Pθ(·)
which are used to calculate the class-wise prediction pT with hT to optimize with LHP ,
and pre-defined Gaussian estimator G(·) to regularize hT with Lbce-Q.

DPN [14] employs randomly assigned target vectors with maximal inter-class similarity
and utilizes bit-wise hinge-like loss. Unlike DPN and CSQ, which use a hash target that
is not trainable, in our DHD, the hash center is set as a trainable proxy which jointly
learns the similarity with the hash codes during training.

Self-distillation. Inspired by knowledge distillation [18], self-distillation emerged as
a concept that employs a single network to generalize itself in a self-taught fashion,
and plenty of works demonstrated its benefits in improving deep model performance
[49,40,45,5]. Many of them utilize a simple Siamese architecture [8] to explore and
learn the visual representation with data augmentation, by contrasting two different
augmented results of one image. Similarly, we conduct the self-distillation with aug-
mentations in deep hashing to see the hash codes of two different views of an image
simultaneously. Additionally, in accordance with the characteristics of hashing, we con-
sider a method of minimizing the cosine distance that behaves similarly to the distance
in the Hamming space to reduce the representation discrepancy during model training.

3 Method

The goal of a deep hashing model H of Deep Hash Distillation (DHD) is to map an
input image x to a K-dimensional binary code b ∈ {−1, 1}K in Hamming space. For
this purpose, H is optimized to find a high quality real-valued hash code h, and then



Deep Hash Distillation for Image Retrieval 5

sign operation is utilized to quantize h as b. Instead of including non-differentiable
quantization process in model training, we learn H in the real space to estimate optimal
b with continuously relaxed h while fully exploiting the power of data augmentation.
We notate trainable components with θ as a subscript. In the following, h becomes
robust to transformations in 3.1, and becomes discriminative and binary-like in 3.2.

3.1 Self-distilled Hashing

In general, H is trained in the real space to obtain discriminative h, which should main-
tain its property in the Hamming space even if quantized to b. Therefore, it is important
to align h and b to carry a similar representation during training. However, when data
augmentation is applied to the training input and the following change occurs in h,
there can be misalignment between h and b, as shown in Figure. 1. Thus, direct use of
augmentations can cause discrepancies in the representation between h and b, which
degrades retrieval performance as we observed in Sec 4.3.

Hamming distance as cosine distance. It is noteworthy that the Hamming distance
between the binary codes can be interpreted as cosine distance (1-cosine similarity)4

[33,48,19]. That is, the cosine similarity between hash codes hi and hj can be utilized
to approximate the Hamming distance between the binary codes bi and bj as:

DH(bi,bj) ≃
K

2
(1− S (hi,hj)) (1)

where bi = sign(hi), bj = sign(hj), DH(·, ·) denotes Hamming distance, S(·, ·) de-
notes cosine similarity. That is, the minimized cosine distance between the hash codes
minimizes the Hamming distance between the binary codes.

Easy-teacher and difficult-student. As shown in Figure 2a, we propose a self-distilled
hashing scheme, which supports the training of deep hashing models with augmen-
tations. We employ weight-sharing Siamese structure [26] to contrast hash codes of
two different views (augmentation results) of an image at once. According to the ob-
servations in self-distillation works [8,5], keeping the output representation of one
branch steady has a significant impact on performance gain. Therefore, we configure
two separate augmentation groups to provide input views with different difficulties of
transformation: one is weakly-transformed easy teacher TT , and the other is strongly-
transformed difficult student TS . Here, we control the difficulty in a stochastic sampling
manner as: employing the same hyper-parameter sT to all transformations in the group,
and make them occur less (weakly) or more (strongly) by scaling their own probability
of occurrence. While this manner makes the teacher representation stable, it has the
advantage that few extreme examples that produce unstable results are not completely
ruled out and contribute to learning. Besides, we stop the gradient of the teacher view’s
corresponding hash codes to avoid collapsing into trivial solutions [8,5].

Loss computation. For a given image x, self-distillation is conducted with image views
as: x̃T = tT (x) and x̃S = tS(x), where tT , tS are randomly sampled transformations

4 Refer supplementary material for proof.



6 Y. Jang et al.

from TT , TS , respectively. The deep encoder Eθ and the hash function Hθ take x̃T and
x̃S as inputs and produce corresponding hash code hT and hS . Then, the proposed
Self-distilled Hashing (SdH) loss is computed as:

LSdH(hT ,hS) = 1− S(hT ,hS) (2)

Optimizing H with LSdH results in the alignment of hT and hS , and thus bT and bS
as follows Eqn. 1, which in turn reduces the discrepancy in representation between two
differently transformed output binary codes.5

Flexibility. Note that self-distilled hashing is applicable to the other common deep
hashing models [4,3,14,47] with regard to exploiting data augmentation during train-
ing, as shown in Section 4.3. Furthermore, various backbones [27,17,12,40,34] can be
utilized as deep encoder, and any hash function Hθ configuration is compatible. For
simplicity, we employ a single FC layer to obtain a hash code of the desired bits, and
apply tanh operation at the end to be bound in [−1, 1].

3.2 For Better Teacher

Besides self-distilled hashing, additional training signals such as supervised learning
loss, and quantization loss are required to obtain the discriminative hash codes. We
only employ teacher hash codes to compute the losses, in order to transfer the learned
hash knowledge to the student’s codes.

Proxy-based similarity learning. Supervised hash similarity learning with pre-defined
orthogonal binary hash targets has shown great performance [47,14,19]. However, the
hash target has limitations in that 1) it requires a complex initialization process, and 2) it
allocates the same Hamming distance between centers so detailed distances according
to semantic similarity cannot be learned. Therefore, as shown in Figure 2b, we introduce
a proxy-based representation learning [36,7,16] in deep hashing by using a collection
of trainable hash proxies Pθ. It has the advantage that the proxies are simply initialized
with randomness, and being able to learn semantic similarity into the proxies. In terms
of training, we first use Pθ to compute class-wise prediction pT with hT as:

pT = [S(pθ1,hT ),S(pθ2,hT ), ...,S(pθNcls
,hT )] (3)

where pθi is a hash proxy assigned to each of the i-th class and Ncls denotes the number
of classes to be distinguished. Then, we use pT to learn the similarity with class label y
by computing Hash Proxy (HP) loss as:

LHP (y,pT , τ) = H (y,Softmax(pT /τ)) (4)

where τ is a temperature scaling hyper-parameter, H(u, v) = −
∑

k uk log vk is a cross
entropy, and Softmax operation is applied along the dimension of pT . Note that, similar
to Eqn 1, LHP is designed to learn Hamming agreement with temperature scaling.

5 We provide a pseudo-code implementation in supplementary material.



Deep Hash Distillation for Image Retrieval 7

Reducing quantization error. To make continuous hash code elements act like bi-
nary bits, the deep hashing methods [3,4,23,47] aim to reduce the quantization error
by minimizing the distance (e.g. Euclidean) between the hash code bit and its closest
binary goal (+1 or −1) in a regression manner. However, since the purpose of hash-
ing is to classify the sign of each bit, it is a more natural choice to view it as a binary
classification: maximum likelihood problem. Hence, we adopt a pre-defined Gaussian
distribution estimator g(h) of mean m and standard deviation σ as:

g(h) = exp

(
− (h−m)2

2σ2

)
(5)

to evaluate the binary likelihood of hash code element h. By employing two estimators:
g+ of m = 1, and g− of m = −1 with the same σ, we compute the likelihoods and a
Binary Cross Entropy-based (BCE) quantization loss as:

Lbce-Q(hT ) =
1

K

K∑
k=1

(
Hb

(
b+k , g

+
k

)
+Hb

(
b−k , g

−
k

))
(6)

where Hb(u, v) = −u log v + (1 − u) log(1 − v) is a binary cross entropy, g+k , g−k
denotes k-th hash code element’s estimated likelihood: g+k = g+(hk), g−k = g−(hk),
and b+k , b−k denotes binary likelihood labels which are obtained (refer Figure 2b) as:

b+k =
1

2
(sign(hk) + 1) , b−k = 1− b+k (7)

As a result, quantization error is reduced by a binary classification loss with the given
estimators, allowing to use the merits of cross entropy presented in [2]. Note that, Lbce-Q
is also applied to hash proxies to make them act as continuously relaxed binary codes.

3.3 Training

Total training loss. Suppose we are given a training mini-batch of NB data points:
XB = {(x1, y1), ..., (xNB

, yNB
)} where each image xi is assigned a label yi ∈ {0, 1}Ncls .

Training views are obtained as x̃Ti = tTi(xi) and x̃Si = tSi(xi) for all data points,
where tTi ∼ TT and tSi ∼ TS . Total loss LT for DHD is computed with XB as:

LT (XB) =
1

NB

NB∑
n=1

(LHP + λ1LSdH + λ2Lbce-Q) (8)

where λ1 and λ2 are hyper-parameters that balance the influence of the training objec-
tives. The entire DHD framework is trained in an end-to-end fashion.

Multi-label case. In the case of determining semantic similarity between multi-hot la-
beled images, the previous works [44,51,47] simply checked whether the images share



8 Y. Jang et al.

at least one positive label or not. However, learning with the above similarity has limi-
tations in that the label dependency [9] is ignored. Thus, we aim to capture the intelli-
gence that appears in label dependency by utilizing the Softmax cross entropy with the
normalized multi-hot label y. Specifically, y is converted as y = y/∥y∥1 to balance the
contribution of each label, and the same LHP is computed to optimize the deep hashing
model for multi-label image retrieval.

4 Experiments

4.1 Setup

Datasets. To evaluate our DHD, we conduct experiments against several conventional
and modern methods. Three most popular hashing based retrieval benchmark datasets
are explored6, and we explain the composition of each dataset in Table 1.

Table 1: Description of the image retrieval datasets.
Dataset # Database # Train # Query Nc

ImageNet [37] 128,503 13,000 5,000 100

NUS-WIDE [10] 149,736 10,500 2,100 21

MS COCO [31] 117,218 10,000 5,000 80

Evaluation metrics. We follow the protocol utilized in deep hashing [4,3,47] to eval-
uate our approach on both single-labeled and multi-labeled datasets. Specifically, we
employ three metrics: 1) mean average precision (mAP), 2) precision-recall curves (PR
curves), and 3) precision with respect to top-M returned image (P@Top-M ). Regard-
ing mAP score computation, we select the top-M images from the retrieval ranked-list
results. The returned images and the query image are considered relevant whether one
or more class labels are the same. We set binary code length: hash code dimensionality
K as 16, 32, and 64, to examine the performance according to the code size.

4.2 Implementation Details

Data augmentation. Following the works presented in [6], we choose family T of five
image transformations: 1) resized crop, 2) horizontal flip, 3) color jitter, 4) grayscale,
and 5) blur, where all of each are sampled uniformly with a given probability and se-
quentially applied to the inputs. We keep the internal parameters of each transformation
equal to [6]. For self-distilled hashing, we configure two groups with T , where the diffi-
cult student group is TS = T , and the easy teacher group TT is configured by scaling all
transform occurrence with sT , which is in the range of (0, 1]. We set TT as the default
for the methods trained without SdH.

6 The details of each dataset are described in the supplementary material.



Deep Hash Distillation for Image Retrieval 9

Table 2: mean Average Precision (mAP) scores for different bits on three benchmarks.

Method Backbone
ImageNet NUS-WIDE MS COCO

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 16-bit 32-bit 64-bit

ITQ [15]

Non-deep

0.266 0.436 0.576 0.435 0.396 0.365 0.566 0.562 0.502
SH [43] 0.210 0.329 0.418 0.401 0.421 0.423 0.495 0.507 0.510

KSH [43] 0.160 0.298 0.394 0.394 0.407 0.399 0.521 0.534 0.536
SDH [38] 0.299 0.455 0.585 0.575 0.590 0.613 0.554 0.564 0.580

CNNH [44]

AlexNet [27]

0.315 0.473 0.596 0.655 0.659 0.647 0.599 0.617 0.620
DNNH [28] 0.353 0.522 0.610 0.703 0.738 0.754 0.644 0.651 0.647
DHN [51] 0.367 0.522 0.627 0.712 0.739 0.751 0.701 0.710 0.735

HashNet [4] 0.425 0.559 0.649 0.720 0.745 0.758 0.685 0.714 0.742
DCH [3] 0.636 0.645 0.656 0.740 0.752 0.763 0.695 0.721 0.748

DHD(Ours) 0.657 0.701 0.721 0.780 0.805 0.820 0.749 0.781 0.792

DPN [14]
ResNet [17]

0.828 0.863 0.872 0.783 0.816 0.838 0.796 0.838 0.861
CSQ [47] 0.851 0.865 0.873 0.810 0.825 0.839 0.750 0.824 0.852

DHD(Ours) 0.864 0.891 0.901 0.820 0.839 0.850 0.839 0.873 0.889

ViT [12] 0.927 0.938 0.944 0.837 0.862 0.870 0.886 0.919 0.939
DeiT [40] 0.932 0.943 0.948 0.839 0.861 0.867 0.883 0.913 0.925DHD(Ours)

SwinT [34] 0.944 0.955 0.956 0.848 0.867 0.875 0.894 0.930 0.945

Experiments. Retrieval experiments are conducted by dividing backbones as: Non-
deep, AlexNet [27], ResNet (ResNet50) [17] , and vision Transformers [12,40,34]. For
non-deep hashing approaches: ITQ [15], SH [43], KSH [33] and SDH [38], we report
the results directly from the latest works [4,3,47] for comparison. We set up the same
training environment by leveraging PyTorch framework and the image transformation
functions of kornia [13] library for augmentation. We employ Adam optimizer [25] and
decay the learning rate with cosine scheduling [35] for training deep hashing methods.
Especially for DHD hyper-parameters7, sT is set to 0.2 for AlexNet, and 0.5 for other
backbones. τ is set by considering Ncls as {0.2, 0.6, 0.4} for {ImageNet, NUS-WIDE,
MS COCO}, respectively. λ1 and λ2 are set equal to 0.1 for a balanced contributions
each training objective, and σ in Lbce-Q is set to 0.5 as default.

4.3 Results and Analysis

Comparison with others. The mAP scores are calculated by varying the top-M for
each dataset as: ImageNet@1000, NUS-WIDE@5000 and MS COCO@5000 to make
a fair comparison with previous works [4,3,47]. The results are listed in Table 2, where
the highest score for each backbone is shown in bold, and we highlight our DHD
method. Among the non-deep hashing methods, SDH shows the best retrieval results
by employing supervised label signals in hash function learning. Deep hashing meth-
ods generally outperform non-deep hashing ones, since elaborately labeled annotations
are fully utilized during training. For ImageNet, NUS-WIDE, and MS COCO, averag-

7 More details can be found in the supplementary material.



10 Y. Jang et al.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

(a) ImageNet

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

(b) NUS-WIDE

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

(c) MS COCO

Fig. 3: Precision-Recall curves on three image datasets with binary codes @ 64-bits.

0 200 400 600 800 1000

Number of top returned images

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
re

ci
si

o
n

(a) ImageNet

0 200 400 600 800 1000

Number of top returned images

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

P
re

ci
si

o
n

(b) NUS-WIDE

0 200 400 600 800 1000

Number of top returned images

0.65

0.7

0.75

0.8

0.85

0.9

P
re

ci
si

o
n

(c) MS COCO

Fig. 4: Precision@top-1000 curves on three image datasets with binary codes @ 64-bits.

ing the mAP scores of all bit lengths yields 36.3%p, 33.7%p, and 25.0%p differences
between the non-deep and deep methods, respectively.

Notably, our DHD shows the best mAP scores for all datasets in every bit length
with every deep backbone architecture. In particular for AlexNet backbone hashing
approaches, DHD shows performance improvement of 16.3%p, 7.9%p, and 9.2%p by
averaging the mAP scores of all bit lengths in three dataset results orderly, compared
to others. To make a comparison with ResNet backbone methods, DHD also achieves
2.7%p, 1.8%p, and 4.7%p higher retrieval scores on average. In line with the recent
trend of other computer vision tasks, we first introduce Transformer-based image rep-
resentation learning architectures: ViT [12], DeiT [40], and SwinT [34] to the hashing
community and perform retrieval experiments. As reported, when the Transformer is
integrated into the DHD framework, it delivers outstanding results for the benchmark
image datasets with the increase of 5.8%p, 2.2%p, and 4.8%p, in the same as above,
compared to ResNet backbone DHD.

To further investigate the retrieval quality of DHD, we deploy the graph of PR curve
and precision for the top 1,000 retrieved images at 64 bits. As shown in Figures 3 and 4,
DHD significantly outperforms all the comparison hashing approaches by large margins
under these two evaluation metrics. Especially, DHD shows desirable retrieval results in
that much higher precision are achieved at lower recall levels, and larger number of top
samples are retrieved than all compared methods. These demonstrate the practicality of
DHD in real world retrieval cases.



Deep Hash Distillation for Image Retrieval 11

Table 3: mAP scores without (−) or with (+) Self-distilled Hashing (SdH).

Method

ImageNet NUS-WIDE MS COCO

− SdH + SdH − SdH + SdH − SdH + SdH

16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit

HashNet [4] 0.337 0.502 0.501 0.661 0.705 0.762 0.745 0.769 0.655 0.727 0.695 0.753
DCH [3] 0.571 0.597 0.640 0.673 0.748 0.767 0.754 0.771 0.669 0.697 0.703 0.746
DPN [14] 0.562 0.656 0.630 0.708 0.753 0.787 0.757 0.801 0.672 0.760 0.710 0.772
CSQ [47] 0.569 0.658 0.634 0.711 0.757 0.793 0.759 0.804 0.670 0.752 0.707 0.765

LHP 0.574 0.660 0.642 0.715 0.759 0.798 0.766 0.812 0.706 0.759 0.725 0.775
LHP + Lbce-Q 0.583 0.671 0.657 0.721 0.775 0.806 0.780 0.820 0.731 0.766 0.749 0.792

Self-distilled Hashing with other methods and ablations. In order to prove that SdH
can be applied to other deep hashing baselines [4,3,14,47], we perform retrieval ex-
periments with AlexNet backbone and show the results in Table 3. With SdH setup,
we employ TT and TS groups to produce input views, and for without SdH setup, we
only use TS to generate input views. By comparing Table 2 and the results without SdH
in Table 3, we can see that the deep hashing model learned with TS is inferior to the
model learned with TT . This is because the use of TS increases the chances of emerg-
ing discrepancy in representation between Hamming and real space. Otherwise, if the
model adopts SdH training to utilize both TT and TS , the retrieval performance can
be improved since SdH mitigates discrepancy and properly exploits the power of data
augmentation. Intending to see the ablation results of our proposals, we compare the
retrieval results between LHP with the others and find that the trainable setting for the
hash centers improve the search quality. Moreover, by combining LHP with Lbce-Q, the
performance gain is obtained for all the bit lengths, showing the power of binary cross
entropy-based quantization. Finally, the best mAP scores are achieved when both LHP

and Lbce-Q are integrated with SdH training, confirming the effectiveness of DHD.

Trainable Hash Proxies. In DHD, we employ trainable hash proxies opposed to using
predefined orthogonal hash targets [47,14,19], intending to embed detailed class-wise
semantic similarity into the hash representation. We visualize8 the pairwise cosine sim-
ilarities in Figure 5 using ResNet backbone and 64 bit codes to observe the actual align-
ment between hash proxies. Since hash targets are generated from a Hadamard matrix,
they are orthogonal as shown in Figure 5a. Therefore, the cosine similarity (Hamming
distance) between different hash targets are equal, neglecting the semantic relevance
between the hash representations of different classes. Moreover for multi-label cases,
label dependencies [9] are also ignored whether the contents appear simultaneously in
an image or not.

On the other hand, trainable hash proxies are designed to embed semantic similar-
ity by themselves during training. Hence, class-wise relevance can be displayed when
we compute pairwise cosine similarities as in Figures 5b to 5d. Specifically for Ima-
geNet, hash proxies of semantically relevant classes have higher similarity, such as Nor-

8 Visualized results with all classes for each dataset are shown in the supplementary material.



12 Y. Jang et al.

(a) ImageNet Hash targets (b) ImageNet Hash proxies

(c) NUS-WIDE Hash Proxies (d) MS COCO Hash Proxies

Fig. 5: Pairwise cosine similarities to verify the impact of proxy-based hash representa-
tion learning. We utilize (a) pre-defined non-trainable hash targets, and (b-d) proposed
trainable hash proxies. For simplicity, we show the results of 10 classes selected.

folk terrier-Australian terrier and purse-wallet. Moreover, for multi-label datasets hash
proxies of classes that frequently appear together in an image have higher similarity,
such as sky-clouds and buildings-window-vehicle in NUS-WIDE, and bowl-cup-dining
table in MS COCO. In a nutshell overall, we can confirm that the supervised semantic
signals are well guided to represent detailed similarity between the hash proxies, which
in turn yields better quality search outcomes.

Insensitivity to transformations. To investigate the sensitivity to transformations, we
examine how the binary code shifts when transformed images are fed to ResNet back-
bone methods, by using ImageNet query set. We measure the average Hamming dis-
tance between the untransformed (sT = 0) images’ output binary codes and the trans-
formed (sT in (0, 1]) images’ output binary codes, as observed in Figure 6. Here, CSQ
[47], DPN [14], and a model learned with LHP are trained with weakly-transformed
TT , which in result show sensitivity to transformations due to barely used augmenta-
tion. When the augmentation is applied (LHP + TS), model is improved to be more



Deep Hash Distillation for Image Retrieval 13

transformation𝑤𝑒𝑎𝑘 𝑠𝑡𝑟𝑜𝑛𝑔

+𝒯𝑆

+ℒ𝑆𝑑𝐻

𝑠𝑇

Fig. 6: Average Hamming distance difference between the original and transformed im-
ages of ImageNet query set. By varying the sT , we measure the sensitivity to transfor-
mation of ResNet backbone methods, where the numbers in legend indicate mAP. Solid
lines present DHD variants, and dotted lines present others. +TS denotes strong student
augmentation is applied during training. A low slope indicates insensitivity to various
transformations, where the blue line (DHD) is the lowest.

Table 4: mAP scores on unseen deformations.
Deformation with SdH without SdH

None 0.891 (2.3% ↑) 0.871
Cutout 0.862 (3.7% ↑) 0.827
Dropout 0.810 (7.9% ↑) 0.765
Zoom in 0.658 (19.0% ↑) 0.552
Zoom out 0.816 (1.4% ↑) 0.805
Rotation 0.856 (2.4% ↑) 0.836
Shearing 0.842 (2.7% ↑) 0.815
Gaussian noise 0.768 (10.5% ↑) 0.673

robust to transformations, however, the mAP score decreases due to the discrepancy in
representation between Hamming and Real space during training. Otherwise, the com-
bined LHP +LSdH (blue line) exhibits the highest robustness while achieving the best
mAP score, by minimizing discrepancy in representation during training and success-
fully exploring the potential of strong augmentation.

Robustness to unseen deformations. To further examine the generalization capacity of
DHD, we conduct experiments with unseen (not seen during training) transformations
9 to inputs following the evaluation protocol utilized in [16]. As reported in Table 4,
deep hashing model with SdH significantly outperforms the model without SdH at all
deformations, showing a performance difference of up to 19% (zoom in). In particular,
SdH makes deep hashing model robust to per-pixel deformations such as dropout and
Gaussian noise, even though SdH has not included any pixel-level transformations.

9 Detailed deformation setup is listed in the supplementary material.



14 Y. Jang et al.

ImageNet NUS-WIDE MS COCO

(a) without Lbce-Q

ImageNet NUS-WIDE MS COCO

(b) with Lbce-Q

Fig. 7: 3D visualized histograms to verify the impact of Lbce-Q. x-axis presents value
of hash element h, y-axis presents bit position, and z-axis presents frequency counts.

Quantization. The effect of Lbce-Q is plotted in Figure 7. We can see that the binary
bits are distributed more evenly and binary-like in 7b. This implies that the entropy of
bit distribution is much higher when Lbce-Q is applied, which can show better retrieval
accuracy by representing diverse binary codes, as observed and investigated in [30].

5 Conclusion
In this paper, we proposed a novel Self-distilled Hashing (SdH) scheme which is ap-
plicable to deep hashing models during training. By maximizing the cosine similarity
between hash codes of different views of an image, SdH minimizes the discrepancy in
the representation due to augmentation and leads to increase the robustness of retrieval
systems. Additionally, we aimed to embed elaborate semantic similarity into the hash
codes with a proxy-based learning, and further impose cross entropy-based quantization
loss. With all these proposals, we configured Deep Hash Distillation (DHD) framework
that yields the state-of-the-art performance on popular deep hashing benchmarks.

6 Acknowledgement
This research was supported in part by NAVER Corp., the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2C2007220),
and the Institute of Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT) [NO.2021-0-01343, Artificial
Intelligence Graduate School Program (Seoul National University)].



Deep Hash Distillation for Image Retrieval 15

References

1. Bai, J., Chen, B., Li, Y., Wu, D., Guo, W., Xia, S.t., Yang, E.h.: Targeted attack for deep
hashing based retrieval. In: ECCV. pp. 618–634. Springer (2020) 1

2. Boudiaf, M., Rony, J., Ziko, I.M., Granger, E., Pedersoli, M., Piantanida, P., Ayed, I.B.: A
unifying mutual information view of metric learning: cross-entropy vs. pairwise losses. In:
ECCV. pp. 548–564. Springer (2020) 7

3. Cao, Y., Long, M., Liu, B., Wang, J.: Deep cauchy hashing for hamming space retrieval. In:
CVPR. pp. 1229–1237 (2018) 1, 3, 6, 7, 8, 9, 11

4. Cao, Z., Long, M., Wang, J., Yu, P.S.: Hashnet: Deep learning to hash by continuation. In:
CVPR. pp. 5608–5617 (2017) 1, 3, 6, 7, 8, 9, 11

5. Caron, M., Touvron, H., Misra, I., Jegou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging
properties in self-supervised vision transformers. In: ICCV. pp. 9650–9660 (2021) 2, 3, 4, 5

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709 (2020) 8

7. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classi-
fication. ICLR (2019) 6

8. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR. pp. 15750–
15758 (2021) 3, 4, 5

9. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with graph convo-
lutional networks. In: CVPR. pp. 5177–5186 (2019) 8, 11

10. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image
database from national university of singapore. In: ACM ICMR. pp. 1–9 (2009) 8

11. Cui, Q., Jiang, Q.Y., Wei, X.S., Li, W.J., Yoshie, O.: Exchnet: A unified hashing network for
large-scale fine-grained image retrieval. In: ECCV. pp. 189–205. Springer (2020) 1

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words:
Transformers for image recognition at scale. In: ICLR (2020) 3, 6, 9, 10

13. E. Riba, e.a.: Kornia: an open source differentiable computer vision library for pytorch. In:
WACV (2020), https://arxiv.org/pdf/1910.02190.pdf 9

14. Fan, L., Ng, K., Ju, C., Zhang, T., Chan, C.S.: Deep polarized network for supervised learning
of accurate binary hashing codes. In: IJCAI. pp. 825–831 (2020) 3, 4, 6, 9, 11, 12

15. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: A procrustean ap-
proach to learning binary codes for large-scale image retrieval. PAMI 35(12), 2916–2929
(2012) 1, 3, 9

16. Gu, G., Ko, B., Kim, H.G.: Proxy synthesis: Learning with synthetic classes for deep metric
learning. In: AAAI (2021) 6, 13

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR.
pp. 770–778 (2016) 6, 9

18. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 (2015) 4

19. Hoe, J.T., Ng, K.W., Zhang, T., Chan, C.S., Song, Y.Z., Xiang, T.: One loss for all: Deep
hashing with a single cosine similarity based learning objective. NeurIPS 34 (2021) 2, 5, 6,
11

20. Jang, Y.K., Cho, N.I.: Deep face image retrieval for cancelable biometric authentication. In:
AVSS. pp. 1–8. IEEE (2019) 1

21. Jang, Y.K., Cho, N.I.: Generalized product quantization network for semi-supervised image
retrieval. In: CVPR. pp. 3420–3429 (2020) 1, 3

22. Jang, Y.K., Cho, N.I.: Self-supervised product quantization for deep unsupervised image
retrieval. In: ICCV. pp. 12085–12094 (2021) 1

https://arxiv.org/pdf/1910.02190.pdf


16 Y. Jang et al.

23. Jang, Y.K., Jeong, D.j., Lee, S.H., Cho, N.I.: Deep clustering and block hashing network for
face image retrieval. In: ACCV. pp. 325–339. Springer (2018) 1, 3, 7

24. Jeong, D.j., Choo, S.K., Seo, W., Cho, N.I.: Classification-based supervised hashing with
complementary networks for image search. In: BMVC. p. 74 (2018) 1, 3

25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015) 9
26. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image

recognition. In: ICML deep learning workshop. vol. 2. Lille (2015) 5
27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: NeurIPS. pp. 1097–1105 (2012) 6, 9
28. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding with deep

neural networks. In: CVPR. pp. 3270–3278 (2015) 9
29. Li, C., Deng, C., Li, N., Liu, W., Gao, X., Tao, D.: Self-supervised adversarial hashing net-

works for cross-modal retrieval. In: CVPR. pp. 4242–4251 (2018) 1
30. Li, Y., van Gemert, J.: Deep unsupervised image hashing by maximizing bit entropy. In:

AAAI (2020) 14
31. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,

C.L.: Microsoft coco: Common objects in context. In: European conference on computer
vision. pp. 740–755. Springer (2014) 8

32. Liu, S., Wang, Y.: Few-shot learning with online self-distillation. In: ICCV. pp. 1067–1070
(2021) 2

33. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In:
CVPR. pp. 2074–2081. IEEE (2012) 1, 2, 3, 5, 9

34. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer:
Hierarchical vision transformer using shifted windows. In: ICCV (2021) 3, 6, 9, 10

35. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016) 9

36. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric
learning using proxies. In: ICCV. pp. 360–368 (2017) 6

37. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. IJCV
115(3), 211–252 (2015) 8

38. Shen, F., Shen, C., Liu, W., Tao Shen, H.: Supervised discrete hashing. In: CVPR. pp. 37–45
(2015) 1, 3, 9

39. Shen, Y., Qin, J., Chen, J., Yu, M., Liu, L., Zhu, F., Shen, F., Shao, L.: Auto-encoding twin-
bottleneck hashing. In: CVPR. pp. 2818–2827 (2020) 1

40. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-
efficient image transformers & distillation through attention. In: ICML. pp. 10347–10357.
PMLR (2021) 2, 3, 4, 6, 9, 10

41. Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash. PAMI 40(4),
769–790 (2017) 1, 3

42. Wang, Z., Zheng, Q., Lu, J., Zhou, J.: Deep hashing with active pairwise supervision. In:
ECCV. pp. 522–538. Springer (2020) 1

43. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NeurIPS. pp. 1753–1760 (2009) 1,
3, 9

44. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image
representation learning. In: AAAI (2014) 1, 3, 7, 9

45. Xu, T.B., Liu, C.L.: Data-distortion guided self-distillation for deep neural networks. In:
AAAI. vol. 33, pp. 5565–5572 (2019) 2, 4

46. Yang, E., Liu, T., Deng, C., Liu, W., Tao, D.: Distillhash: Unsupervised deep hashing by
distilling data pairs. In: CVPR. pp. 2946–2955 (2019) 1



Deep Hash Distillation for Image Retrieval 17

47. Yuan, L., Wang, T., Zhang, X., Tay, F.E., Jie, Z., Liu, W., Feng, J.: Central similarity quanti-
zation for efficient image and video retrieval. In: CVPR. pp. 3083–3092 (2020) 1, 3, 6, 7, 8,
9, 11, 12

48. Yue, Cao, e.a.: Deep quantization network for efficient image retrieval. In: AAAI (2016) 2,
5

49. Yun, S., Park, J., Lee, K., Shin, J.: Regularizing class-wise predictions via self-knowledge
distillation. In: CVPR. pp. 13876–13885 (2020) 2, 4

50. Zhou, X., Shen, F., Liu, L., Liu, W., Nie, L., Yang, Y., Shen, H.T.: Graph convolutional
network hashing. IEEE Transactions on cybernetics 50(4), 1460–1472 (2018) 1

51. Zhu, H., Long, M., Wang, J., Cao, Y.: Deep hashing network for efficient similarity retrieval.
In: AAAI (2016) 1, 3, 7, 9


	Deep Hash Distillation for Image Retrieval

