Abstract
There has been a recent explosion of large-scale image-text datasets, as images with alt-text captions can be easily obtained online. Obtaining large-scale, high quality data for video in the form of text-video and text-audio pairs however, is more challenging. To close this gap we propose a new video mining pipeline which involves transferring captions from image captioning datasets to video clips with no additional manual effort. Using this pipeline, we create a new large-scale, weakly labelled audio-video captioning dataset consisting of millions of paired clips and captions. We show that training a multimodal transformer based model on this data achieves competitive performance on video retrieval and video captioning, matching or even outperforming HowTo100M pretraining with 20x fewer clips. We also show that our mined clips are suitable for text-audio pretraining, and achieve state of the art results for the task of audio retrieval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Full distribution of clips per caption in VideoCC3M is provided in suppl. material.
- 2.
We find that interestingly, 83% of the 7.9K verbs (extracted using spacy package) in MSR-VTT (video annotated dataset), are present in CC3M.
References
YouTube Data API. http://developers.google.com/youtube/v3/docs/captions
Abavisani, M., Joze, H.R.V., Patel, V.M.: Improving the performance of unimodal dynamic hand-gesture recognition with multimodal training. In: CVPR (2019)
Aguilar, G., Rozgic, V., Wang, W., Wang, C.: Multimodal and multi-view models for emotion recognition. In: ACL (2019)
Albanie, S., Nagrani, A., Vedaldi, A., Zisserman, A.: Emotion recognition in speech using cross-modal transfer in the wild. In: Proceedings of the 26th ACM international conference on Multimedia, pp. 292–301 (2018)
Amrani, E., Ben-Ari, R., Rotman, D., Bronstein, A.: Noise estimation using density estimation for self-supervised multimodal learning. arXiv preprint arXiv:2003.03186 (2020)
Anne Hendricks, L., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: ICCV (2017)
Antol, S. et al.: VQA: Visual question answering. In: ICCV (2015)
Bain, M., Nagrani, A., Brown, A., Zisserman, A.: Condensed movies: Story based retrieval with contextual embeddings. In: ACCV (2020)
Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: A joint video and image encoder for end-to-end retrieval. ICCV (2021)
Bain, M., Nagrani, A., Varol, G., Zisserman, A.: A clip-hitchhiker’s guide to long video retrieval. arXiv preprint arXiv:2205.08508 (2022)
Banerjee, S., Lavie, A.: Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In: ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization (2005)
Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12m: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)
Chechik, G., Ie, E., Rehn, M., Bengio, S., Lyon, D.: Large-scale content-based audio retrieval from text queries. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 105–112 (2008)
Chen, H., Li, J., Hu, X.: Delving deeper into the decoder for video captioning. In: ECAI (2020)
Chen, H., Lin, K., Maye, A., Li, J., Hu, X.: A semantics-assisted video captioning model trained with scheduled sampling. Front. Robot. AI 7 475767 (2020)
Chen, H., Xie, W., Vedaldi, A., Zisserman, A.: Vggsound: A large-scale audio-visual dataset. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 721–725. IEEE (2020)
Chen, S., Jiang, Y.G.: Motion guided spatial attention for video captioning. In: AAAI (2019)
Chen, X., Fang, H., Lin, T.Y., Vedantam, R., Gupta, S., Dollár, P., Zitnick, C.L.: Microsoft coco captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)
Cheng, X., Lin, H., Wu, X., Yang, F., Shen, D.: Improving video-text retrieval by multi-stream corpus alignment and dual softmax loss (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)
Drossos, K., Lipping, S., Virtanen, T.: Clotho: An audio captioning dataset. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 736–740. IEEE (2020)
Elizalde, B., Zarar, S., Raj, B.: Cross modal audio search and retrieval with joint embeddings based on text and audio. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4095–4099. IEEE (2019)
Fang, H., Xiong, P., Xu, L., Chen, Y.: Clip2video: Mastering video-text retrieval via image clip. arXiv preprint arXiv:2106.11097 (2021)
Font, F., Roma, G., Serra, X.: Freesound technical demo. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 411–412 (2013)
Gabeur, V., Nagrani, A., Sun, C., Alahari, K., Schmid, C.: Masking modalities for cross-modal video retrieval. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1766–1775 (2022)
Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: ECCV (2020)
Gao, R., Oh, T.H., Grauman, K., Torresani, L.: Listen to look: Action recognition by previewing audio. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10457–10467 (2020)
Gao, Z., Liu, J., Chen, S., Chang, D., Zhang, H., Yuan, J.: Clip2tv: An empirical study on transformer-based methods for video-text retrieval. arXiv preprint arXiv:2111.05610 (2021)
Gemmeke, J.F., et al.: Audio set: An ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780. IEEE (2017)
Ghadiyaram, D., Tran, D., Mahajan, D.: Large-scale weakly-supervised pre-training for video action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12046–12055 (2019)
Girdhar, R., Tran, D., Torresani, L., Ramanan, D.: Distinit: Learning video representations without a single labeled video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 852–861 (2019)
Gong, Y., Chung, Y.A., Glass, J.: Ast: Audio spectrogram transformer. arXiv preprint arXiv:2104.01778 (2021)
Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2016)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hou, J., Wu, X., Zhao, W., Luo, J., Jia, Y.: Joint syntax representation learning and visual cue translation for video captioning. In: ICCV (2019)
Huang, G., Pang, B., Zhu, Z., Rivera, C., Soricut, R.: Multimodal pretraining for dense video captioning. In: AACL (2020)
Juan, D.C., et al.: Graph-rise: Graph-regularized image semantic embedding. arXiv preprint arXiv:1902.10814 (2019)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Kim, C.D., Kim, B., Lee, H., Kim, G.: Audiocaps: Generating captions for audios in the wild. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 119–132 (2019)
Koepke, A., Oncescu, A.M., Henriques, J.F., Akata, Z., Albanie, S.: Audio retrieval with natural language queries: A benchmark study. arXiv preprint arXiv:2112.09418 (2021)
Krishna, R., Hata, K., Ren, F., Fei-Fei, L., Carlos Niebles, J.: Dense-captioning events in videos. In: ICCV (2017)
Krishan, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123(1), 32–73 (2017)
Lei, J., et al.: Less is more: Clipbert for video-and-language learning via sparse sampling. In: CVPR (2021)
Lei, J., Yu, L., Bansal, M., Berg, T.L.: Tvqa: Localized, compositional video question answering. In: EMNLP (2018)
Li, L., Chen, Y.C., Cheng, Y., Gan, Z., Yu, L., Liu, J.: Hero: Hierarchical encoder for video+ language omni-representation pre-training. In: EMNLP (2020)
Li, T., Wang, L.: Learning spatiotemporal features via video and text pair discrimination. arXiv preprint arXiv:2001.05691 (2020)
Lin, T.Y., et al.: Microsoft COCO: Common objects in context. In: ECCV (2014)
Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: Video retrieval using representations from collaborative experts. In: BMVC (2019)
Luo, H., et al.: UniVL: A unified video and language pre-training model for multimodal understanding and generation. arXiv preprint arXiv:2002.06353 (2020)
Luo, H., et al.: UniVL: A unified video and language pre-training model for multimodal understanding and generation. arXiv e-prints (2020)
Luo, H., et al.: Clip4clip: An empirical study of clip for end to end video clip retrieval. arXiv preprint arXiv:2104.08860 (2021)
Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: CVPR (2020)
Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips. In: ICCV (2019)
Monfort, M., Jin, S., Liu, A., Harwath, D., Feris, R., Glass, J., Oliva, A.: Spoken moments: Learning joint audio-visual representations from video descriptions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14871–14881 (2021)
Nagrani, A., Sun, C., Ross, D., Sukthankar, R., Schmid, C., Zisserman, A.: Speech2action: Cross-modal supervision for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10317–10326 (2020)
Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., Sun, C.: Attention bottlenecks for multimodal fusion. In: NeurIPS (2021)
Oncescu, A.M., Koepke, A., Henriques, J.F., Akata, Z., Albanie, S.: Audio retrieval with natural language queries. arXiv preprint arXiv:2105.02192 (2021)
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: ACL (2002)
Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. arXiv preprint arXiv:2010.02824 (2020)
Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: ICLR (2021)
Radford, A., et al.: Learning transferable visual models from natural language supervision (2021)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. Technical Report (2019)
Rohrbach, A., et al.: Movie description. Int. J. Comput. Vision 123(1), 94–120 (2017)
Rouditchenko, A., et al.: AVLnet: Learning audio-visual language representations from instructional videos. arXiv preprint arXiv:2006.09199 (2020)
Seo, P.H., Nagrani, A., Schmid, C.: Look before you speak: Visually contextualized utterances. In: CVPR (2021)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL (2018)
Shvetsova, N., et al.: Everything at once-multi-modal fusion transformer for video retrieval. In: CVPR (2022)
Slaney, M.: Semantic-audio retrieval. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing. vol. 4, pp. IV-4108. IEEE (2002)
Stroud, J.C., Lu, Z., Sun, C., Deng, J., Sukthankar, R., Schmid, C., Ross, D.A.: Learning video representations from textual web supervision. arXiv preprint arXiv:2007.14937 (2020)
Sun, C., Shetty, S., Sukthankar, R., Nevatia, R.: Temporal localization of fine-grained actions in videos by domain transfer from web images. In: ACM Multimedia (2015)
Sun, C., Shetty, S., Sukthankar, R., Nevatia, R.: Temporal localization of fine-grained actions in videos by domain transfer from web images. In: ACM Multimedia (2015)
Tang, Z., Lei, J., Bansal, M.: Decembert: Learning from noisy instructional videos via dense captions and entropy minimization. In: NAACL (2021)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: Consensus-based image description evaluation. In: CVPR (2015)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 652–663 (2016)
Wang, B., Ma, L., Zhang, W., Jiang, W., Wang, J., Liu, W.: Controllable video captioning with pos sequence guidance based on gated fusion network. In: ICCV (2019)
Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text embeddings. In: CVPR (2016)
Wang, X., Zhu, L., Yang, Y.: T2vlad: Global-local sequence alignment for text-video retrieval (2021)
Xu, H.,et al.: Videoclip: Contrastive pre-training for zero-shot video-text understanding. arXiv preprint arXiv:2109.14084 (2021)
Xu, J., Mei, T., Yao, T., Rui, Y.: Msr-vtt: A large video description dataset for bridging video and language. In: CVPR (2016)
Yao, L., et al.: Filip: Fine-grained interactive language-image pre-training. arXiv preprint arXiv:2111.07783 (2021)
You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR (2016)
Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning. In: BMVC (2019)
Zhang, Z., Shi, Y., Yuan, C., Li, B., Wang, P., Hu, W., Zha, Z.J.: Object relational graph with teacher-recommended learning for video captioning. In: CVPR (2020)
Zhou, L., Xu, C., Corso, J.: Towards automatic learning of procedures from web instructional videos. In: AAAI (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nagrani, A. et al. (2022). Learning Audio-Video Modalities from Image Captions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)