Skip to main content

Exploring Disentangled Content Information for Face Forgery Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13674))

Included in the following conference series:

  • 3385 Accesses

Abstract

Convolutional neural network based face forgery detection methods have achieved remarkable results during training, but struggled to maintain comparable performance during testing. We observe that the detector is prone to focus more on content information than artifact traces, suggesting that the detector is sensitive to the intrinsic bias of the dataset, which leads to severe overfitting. Motivated by this key observation, we design an easily embeddable disentanglement framework for content information removal, and further propose a Content Consistency Constraint (\(\text {C}^2\)C) and a Global Representation Contrastive Constraint (GRCC) to enhance the independence of disentangled features. Furthermore, we cleverly construct two unbalanced datasets to investigate the impact of the content bias. Extensive visualizations and experiments demonstrate that our framework can not only ignore the interference of content information, but also guide the detector to mine suspicious artifact traces and achieve competitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deepfake porn is ruining women’s lives. http://www.technologyreview.com/2021/02/12/1018222/deepfake-revenge-porn-coming-ban. Accessed 15 Aug 2021

  2. A voice deepfake was used to scam a ceo out of \$243,000. http://www.forbes.com/sites/jessedamiani/2019/09/03/a-voice-deepfake-was-used-to-scam-a-ceo-out-of-243000. Accessed 02 Jan 2021

  3. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7. IEEE (2018)

    Google Scholar 

  4. Asnani, V., Yin, X., Hassner, T., Liu, X.: Reverse engineering of generative models: Inferring model hyperparameters from generated images. arXiv preprint arXiv:2106.07873 (2021)

  5. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10 (2016)

    Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Chai, L., Bau, D., Lim, S.-N., Isola, P.: What makes fake images detectable? understanding properties that generalize. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 103–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_7

    Chapter  Google Scholar 

  8. Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1081–1088 (2021)

    Google Scholar 

  9. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  10. Chugh, K., Gupta, P., Dhall, A., Subramanian, R.: Not made for each other-audio-visual dissonance-based deepfake detection and localization. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 439–447 (2020)

    Google Scholar 

  11. Ciftci, U.A., Demir, I., Yin, L.: Fakecatcher: Detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  12. Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164 (2017)

    Google Scholar 

  13. Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.K.: On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition, pp. 5781–5790 (2020)

    Google Scholar 

  14. deepfakes: Deepfakes. https://github.com/deepfakes. Accessed 18 Aug 2021

  15. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258. PMLR (2020)

    Google Scholar 

  16. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  17. Haliassos, A., Vougioukas, K., Petridis, S., Pantic, M.: Lips don’t lie: a generalisable and robust approach to face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5039–5049 (2021)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Li, J., Xie, H., Li, J., Wang, Z., Zhang, Y.: Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6458–6467 (2021)

    Google Scholar 

  21. Li, L., Bao, J., Zhang, T., Yang, H., Chen, D., Wen, F., Guo, B.: Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5001–5010 (2020)

    Google Scholar 

  22. Li, Y., Chang, M.C., Lyu, S.: In ictu oculi: Exposing ai created fake videos by detecting eye blinking. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7. IEEE (2018)

    Google Scholar 

  23. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-df: a large-scale challenging dataset for deepfake forensics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3207–3216 (2020)

    Google Scholar 

  24. Liang, J., Deng, W.: Identifying rhythmic patterns for face forgery detection and categorization. In: 2021 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE (2021)

    Google Scholar 

  25. Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 772–781 (2021)

    Google Scholar 

  26. Liu, Y., Stehouwer, J., Liu, X.: On disentangling spoof trace for generic face anti-spoofing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 406–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_24

    Chapter  Google Scholar 

  27. Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8060–8069 (2020)

    Google Scholar 

  28. Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: ProceeRings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16317–16326 (2021)

    Google Scholar 

  29. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  30. MarekKowalski: Fakeswap. htpps://github.com/MarekKowalski/FaceSwap. Accessed 18 Aug 2021

    Google Scholar 

  31. Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-branch recurrent network for isolating deepfakes in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 667–684. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_39

    Chapter  Google Scholar 

  32. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 83–92. IEEE (2019)

    Google Scholar 

  33. Niu, X., Yu, Z., Han, H., Li, X., Shan, S., Zhao, G.: Video-based remote physiological measurement via cross-verified feature disentangling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 295–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_18

    Chapter  Google Scholar 

  34. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  35. Qi, H., Guo, Q., Juefei-Xu, F., Xie, X., Ma, L., Feng, W., Liu, Y., Zhao, J.: Deeprhythm: Exposing deepfakes with attentional visual heartbeat rhythms. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4318–4327 (2020)

    Google Scholar 

  36. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6

    Chapter  Google Scholar 

  37. Rahmouni, N., Nozick, V., Yamagishi, J., Echizen, I.: Distinguishing computer graphics from natural images using convolution neural networks. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2017)

    Google Scholar 

  38. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)

    Google Scholar 

  39. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  40. Sun, K., Liu, H., Ye, Q., Liu, J., Gao, Y., Shao, L., Ji, R.: Domain general face forgery detection by learning to weight. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2638–2646 (2021)

    Google Scholar 

  41. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  42. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of rgb videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

    Google Scholar 

  43. Tran, L., Yin, X., Liu, X.: Disentangled representation learning gan for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1415–1424 (2017)

    Google Scholar 

  44. Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14923–14932 (2021)

    Google Scholar 

  45. Wang, R., Juefei-Xu, F., Ma, L., Xie, X., Huang, Y., Wang, J., Liu, Y.: Fakespotter: A simple yet robust baseline for spotting ai-synthesized fake faces. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20. pp. 3444–3451. International Joint Conferences on Artificial Intelligence Organization (7 2020). https://doi.org/10.24963/ijcai.2020/476. doi.org/10.24963/ijcai.2020/476, main track

  46. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695–8704 (2020)

    Google Scholar 

  47. Yang, X., Li, Y., Lyu, S.: Exposing deep fakes using inconsistent head poses. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8261–8265. IEEE (2019)

    Google Scholar 

  48. Yu, N., Davis, L.S., Fritz, M.: Attributing fake images to gans: learning and analyzing gan fingerprints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7556–7566 (2019)

    Google Scholar 

  49. Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al.: Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

  50. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  51. Zhang, K.-Y., et al.: Face anti-spoofing via disentangled representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 641–657. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_38

    Chapter  Google Scholar 

  52. Zhang, Z., et al.: Gait recognition via disentangled representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4710–4719 (2019)

    Google Scholar 

  53. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2185–2194 (2021)

    Google Scholar 

  54. Zhao, T., Xu, X., Xu, M., Ding, H., Xiong, Y., Xia, W.: Learning to recognize patch-wise consistency for deepfake detection. arXiv preprint arXiv:2012.09311 (2020)

  55. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Key R &D Program of China (2019YFB1406504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Shi, H., Deng, W. (2022). Exploring Disentangled Content Information for Face Forgery Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19781-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19780-2

  • Online ISBN: 978-3-031-19781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics