Abstract
The key to video inpainting is to use correlation information from as many reference frames as possible. Existing flow-based propagation methods split the video synthesis process into multiple steps: flow completion \(\rightarrow {}\) pixel propagation \(\rightarrow {}\) synthesis. However, there is a significant drawback that the errors in each step continue to accumulate and amplify in the next step. To this end, we propose an Error Compensation Framework for Flow-guided Video Inpainting (ECFVI), which takes advantage of the flow-based method and offsets its weaknesses. We address the weakness with the newly designed flow completion module and the error compensation network that exploits the error guidance map. Our approach greatly improves the temporal consistency and the visual quality of the completed videos. Experimental results show the superior performance of our proposed method with the speed up of \(\times {6}\), compared to the state-of-the-art methods. In addition, we present a new benchmark dataset for evaluation by supplementing the weaknesses of existing test datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR, pp. 4778–4787 (2017)
Caelles, S., et al.: The 2018 davis challenge on video object segmentation. arXiv preprint arXiv:1803.00557 (2018)
Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Free-form video inpainting with 3d gated convolution and temporal patchgan. In: ICCV, pp. 9066–9075 (2019)
Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Learnable gated temporal shift module for deep video inpainting. In: BMVC (2019)
Cheng, H.K., Tai, Y.W., Tang, C.K.: Rethinking space-time networks with improved memory coverage for efficient video object segmentation. In: NeurIPS (2021)
Gao, C., Saraf, A., Huang, J.-B., Kopf, J.: Flow-edge guided video completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 713–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_42
Hu, Y.-T., Wang, H., Ballas, N., Grauman, K., Schwing, A.G.: Proposal-based video completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 38–54. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_3
Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Temporally coherent completion of dynamic video. ACM Trans. Graph. (TOG) 35(6), 1–11 (2016)
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR, pp. 2462–2470 (2017)
Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: CVPR, pp. 5792–5801 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lee, S., Oh, S.W., Won, D., Kim, S.J.: Copy-and-paste networks for deep video inpainting. In: ICCV, pp. 4413–4421 (2019)
Liu, R., et al.: Fuseformer: fusing fine-grained information in transformers for video inpainting. In: ICCV, pp. 14040–14049 (2021)
Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video completion. In: ICCV, pp. 4403–4412 (2019)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR, pp. 761–769 (2016)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Wang, C., Huang, H., Han, X., Wang, J.: Video inpainting by jointly learning temporal structure and spatial details. In: AAAI, vol. 33, pp. 5232–5239 (2019)
Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)
Xu, N., et al.: Youtube-vos: sequence-to-sequence video object segmentation. In: ECCV, pp. 585–601 (2018)
Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: CVPR, pp. 3723–3732 (2019)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: ICCV, pp. 4471–4480 (2019)
Zeng, Y., Fu, J., Chao, H.: Learning joint spatial-temporal transformations for video inpainting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 528–543. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_31
Zou, X., Yang, L., Liu, D., Lee, Y.J.: Progressive temporal feature alignment network for video inpainting. In: CVPR, pp. 16448–16457 (2021)
Acknowledgement
This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2014-3-00123, Development of High Performance Visual BigData Discovery Platform for LargeScale Realtime Data Analysis), and No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kang, J., Oh, S.W., Kim, S.J. (2022). Error Compensation Framework for Flow-Guided Video Inpainting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-19784-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19783-3
Online ISBN: 978-3-031-19784-0
eBook Packages: Computer ScienceComputer Science (R0)