Skip to main content

Scraping Textures from Natural Images for Synthesis and Editing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13675))

Included in the following conference series:

  • 2697 Accesses

Abstract

Existing texture synthesis methods focus on generating large texture images given a small texture sample. But such samples are typically assumed to be highly curated: rectangular, clean, and stationary. This paper aims to scrape textures directly from natural images of everyday objects and scenes, build texture models, and employ them for texture synthesis, texture editing, etc. The key idea is to jointly learn image grouping and texture modeling. The image grouping module discovers clean texture segments, each of which is represented as a texture code and a parametric sine wave by the texture modeling module. By enforcing the model to reconstruct the input image from the texture codes and sine waves, our model can be learned via self-supervision on a set of cluttered natural images, without requiring any form of annotation or clean texture images. We show that the learned texture features capture many natural and man-made textures in real images, and can be applied to tasks like texture synthesis, texture editing and texture swapping.

Project page: https://sunshineatnoon.github.io/texture-from-image/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. TPAMI 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Alanov, A., Kochurov, M., Volkhonskiy, D., Yashkov, D., Burnaev, E., Vetrov, D.: User-controllable multi-texture synthesis with generative adversarial networks. arXiv preprint arXiv:1904.04751 (2019)

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  4. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. (Proc. SIGGRAPH) 28(3) (2009)

    Google Scholar 

  5. Bergmann, U., Jetchev, N., Vollgraf, R.: Learning texture manifolds with the periodic spatial GAN. arXiv preprint arXiv:1705.06566 (2017)

  6. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Pub, New York (1966)

    Google Scholar 

  7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  8. Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A.: Describing textures in the wild. In: CVPR (2014)

    Google Scholar 

  9. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. TPAMI 24(5), 603–619 (2002)

    Article  Google Scholar 

  10. Dai, D., Riemenschneider, H., Van Gool, L.: The synthesizability of texture examples. In: CVPR (2014)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  12. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. SIGGRAPH (2001)

    Google Scholar 

  13. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: ICCV (1999)

    Google Scholar 

  14. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  MATH  Google Scholar 

  15. Fiedler, M., Alpers, A.: Power-SLIC: Diagram-based superpixel generation. arXiv preprint arXiv:2012.11772 (2020)

  16. Frühstück, A., Alhashim, I., Wonka, P.: TileGAN: synthesis of large-scale non-homogeneous textures. TOG 38(4), 1–11 (2019)

    Article  Google Scholar 

  17. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NeurIPS (2015)

    Google Scholar 

  18. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  19. Guo, C.e., Zhu, S.C., Wu, Y.N.: Primal sketch: integrating structure and texture. Comput. Vis. Image Underst. 106(1), 5–19 (2007)

    Google Scholar 

  20. Han, F., Zhu, S.C.: Bottom-up/top-down image parsing with attribute grammar. TPAMI 31(1), 59–73 (2008)

    Google Scholar 

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  22. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 229–238 (1995)

    Google Scholar 

  23. Heitz, E., Vanhoey, K., Chambon, T., Belcour, L.: A sliced Wasserstein loss for neural texture synthesis. In: CVPR (2021)

    Google Scholar 

  24. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: NeurIPS (2017)

    Google Scholar 

  25. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005) Volume 1, vol. 1, pp. 654–661. IEEE (2005)

    Google Scholar 

  26. Jampani, V., Sun, D., Liu, M.Y., Yang, M.H., Kautz, J.: Superpixel sampling networks. In: ECCV (2018)

    Google Scholar 

  27. Jetchev, N., Bergmann, U., Vollgraf, R.: Texture synthesis with spatial generative adversarial networks. arXiv preprint arXiv:1611.08207 (2016)

  28. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: ICCV (2021)

    Google Scholar 

  29. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  30. Kaspar, A., Neubert, B., Lischinski, D., Pauly, M., Kopf, J.: Self tuning texture optimization. In: Computer Graphics Forum (2015)

    Google Scholar 

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  33. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. In: SIGGRAPH (2005)

    Google Scholar 

  34. Li, T.M., Lukáč, M., Gharbi, M., Ragan-Kelley, J.: Differentiable vector graphics rasterization for editing and learning. TOG 39(6), 1–15 (2020)

    Article  Google Scholar 

  35. Li, X., Liu, S., De Mello, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Online adaptation for consistent mesh reconstruction in the wild. In: NeurIPS (2020)

    Google Scholar 

  36. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Diversified texture synthesis with feed-forward networks. In: CVPR (2017)

    Google Scholar 

  37. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: NeurIPS (2017)

    Google Scholar 

  38. Li, Y., Hao, M., Di, Z., Gundavarapu, N.B., Wang, X.: Test-time personalization with a transformer for human pose estimation. In: NeurIPS (2021)

    Google Scholar 

  39. Li, Z., Bao, W., Zheng, J., Xu, C.: Deep grouping model for unified perceptual parsing. In: CVPR (2020)

    Google Scholar 

  40. Lin, Q., Zhong, W., Lu, J.: Deep superpixel cut for unsupervised image segmentation. In: ICPR, pp. 8870–8876 (2021)

    Google Scholar 

  41. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  42. Liu, G., et al.: Transposer: universal texture synthesis using feature maps as transposed convolution filter. arXiv preprint arXiv:2007.07243 (2020)

  43. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  44. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: British Machine Vision Conference (BMVC) (2007)

    Google Scholar 

  45. Mardani, M., Liu, G., Dundar, A., Liu, S., Tao, A., Catanzaro, B.: Neural FFTs for universal texture image synthesis. In: NeurIPS (2020)

    Google Scholar 

  46. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  47. Park, T., et al.: Swapping autoencoder for deep image manipulation. In: NeurIPS (2020)

    Google Scholar 

  48. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  49. Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. TPAMI 39(1), 128–140 (2016)

    Article  Google Scholar 

  50. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  51. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV (2003)

    Google Scholar 

  52. Rosenberger, A., Cohen-Or, D., Lischinski, D.: Layered shape synthesis: automatic generation of control maps for non-stationary textures. ACM Trans. Graph. (TOG) 28(5), 1–9 (2009)

    Article  Google Scholar 

  53. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  54. Sendik, O., Cohen-Or, D.: Deep correlations for texture synthesis. TOG 36(5), 1–15 (2017)

    Article  Google Scholar 

  55. Shaham, T.R., Dekel, T., Michaeli, T.: SinGAN: learning a generative model from a single natural image. In: ICCV (2019)

    Google Scholar 

  56. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  57. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: ICML (2020)

    Google Scholar 

  58. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: feed-forward synthesis of textures and stylized images. In: ICML (2016)

    Google Scholar 

  59. Wang, Y., Wei, Y., Qian, X., Zhu, L., Yang, Y.: AINet: association implantation for superpixel segmentation. arXiv preprint arXiv:2101.10696 (2021)

  60. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: SIGGRAPH (2000)

    Google Scholar 

  61. Wertheimer, M.: Laws of organization in perceptual forms. Psycologische Forschung 4 (1923)

    Google Scholar 

  62. Wu, Q., Yu, Y.: Feature matching and deformation for texture synthesis. TOG 23(3), 364–367 (2004)

    Article  Google Scholar 

  63. Wu, Z., Lin, D., Tang, X.: Deep Markov random field for image modeling. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 295–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_18

    Chapter  Google Scholar 

  64. Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolutional networks. In: CVPR (2020)

    Google Scholar 

  65. Yu, N., Barnes, C., Shechtman, E., Amirghodsi, S., Lukac, M.: Texture mixer: a network for controllable synthesis and interpolation of texture. In: CVPR (2019)

    Google Scholar 

  66. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  67. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR (2017)

    Google Scholar 

  68. Zhou, Y., Zhu, Z., Bai, X., Lischinski, D., Cohen-Or, D., Huang, H.: Non-stationary texture synthesis by adversarial expansion. arXiv preprint arXiv:1805.04487 (2018)

  69. Zou, Z., Shi, T., Qiu, S., Yuan, Y., Shi, Z.: Stylized neural painting. In: CVPR (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueting Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12865 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wang, X., Yang, MH., Efros, A.A., Liu, S. (2022). Scraping Textures from Natural Images for Synthesis and Editing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19784-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19783-3

  • Online ISBN: 978-3-031-19784-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics