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Abstract. We propose an unsupervised, mid-level representation for a
generative model of scenes. The representation is mid-level in that it is
neither per-pixel nor per-image; rather, scenes are modeled as a collec-
tion of spatial, depth-ordered “blobs” of features. Blobs are differentiably
placed onto a feature grid that is decoded into an image by a generative
adversarial network. Due to the spatial uniformity of blobs and the lo-
cality inherent to convolution, our network learns to associate different
blobs with different entities in a scene and to arrange these blobs to cap-
ture scene layout. We demonstrate this emergent behavior by showing
that, despite training without any supervision, our method enables appli-
cations such as easy manipulation of objects within a scene (e.g. moving,
removing, and restyling furniture), creation of feasible scenes given con-
straints (e.g. plausible rooms with drawers at a particular location), and
parsing of real-world images into constituent parts. On a challenging
multi-category dataset of indoor scenes, BlobGAN outperforms Style-
GAN2 in image quality as measured by FID. See our project page for
video results and interactive demo: http://www.dave.ml/blobgan.
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1 Introduction

The visual world is incredibly rich. It is so much more than the typical ImageNet-
style photos of solitary, centered objects (cars, cats, birds, faces, etc.), which are
the mainstays of most current paper result sections. Indeed, it was long clear,
both in human vision [9, 27] and in computer vision [94, 56, 58, 28, 19], that
understanding and modeling objects within the context of a scene is of the
utmost importance. Visual artists have understood this for centuries, first by
discovering and following the rules of scene formation during the Renaissance,
and then by expertly breaking such rules in the 20th century (cf. the surrealists
including Magritte, Ernst, and Dalí).

However, in the current deep learning era, scene modeling for both analysis
and synthesis tasks has largely taken a back seat. Images of scenes are either
represented in a top-down fashion, no different from objects – i.e. for GANs or
image classifiers, scene classes such as “bedrooms" or “kitchens" are represented
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Fig. 1. In our generator, random noise is mapped by the layout network F to blob
parameters. Blobs output by F are splatted spatially onto corresponding locations in
the feature grid, used both as initial input and as spatially-adaptive modulation for
the convolutional decoder G. Our blob representation automatically serves as a strong
mid-level generative representation for scenes, discovering objects and their layouts.

the same way as object classes, such as “beds" or “chairs". Or, scenes are modeled
in a bottom-up way by semantic labeling of each image pixel, e.g., semantic
segmentation, pix2pix [31], SPADE [59], etc. Both paths seem unsatisfactory
because neither can provide easy ways of reasoning about parts of the scene as
entities. The scene parts are either baked into a single entangled latent vector
(top-down), or need to be grouped together from individual pixel labels (bottom-
up).

In this paper, we propose an unsupervised mid-level representation for a gen-
erative model of scenes. The representation is mid-level in that it is neither
per-pixel nor per-image; rather, scenes are modeled as a collection of spatial,
depth-ordered Gaussian “blobs”. This collection of blobs provides a bottleneck
in the generative architecture, as shown in Figure 1, forcing each blob to corre-
spond to a specific object in the scene and thus causing a spatially disentangled
representation to emerge. This representation allows us to perform a number
of scene editing tasks (see Figure 3) previously only achievable with extensive
semantic supervision, if at all.

2 Related Work

Mid-level scene representations. Work on mid-level scene representations
can be traced back to the 1970s, to the seminal papers of Yakimovsky and Feld-
man [94] and Ohta et al [56], which already contained many key ideas including
joint bottom-up segmentation and top-down reasoning. Other important devel-
opments were the line of work on normalized-cuts segmentation [79, 99, 20] and
qualitative 3D scene interpretation [28, 24, 82, 19] in the early 2000s. But most
relevant to the present manuscript is the classic Blobworld work of Carson et
al. [12], a region-based image retrieval system, with each image represented by a
mixture-of-Gaussian blobs. Our model could be considered a generative version
of this representation, except we also encode the depth ordering of the blobs.
Scene analysis by synthesis. The idea of modeling a complex visual scene
by trying to generate it has been attempted a number of times in the past.
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Early methods, such as [88, 85, 86], introduced key ideas but were limited by
the generative models of the time. To address this, several approaches tried non-
parametric generation [47, 73, 30], with Scene Collaging [30] the most valiant at-
tempt, showing layered scene representations despite very heavy computational
burden. With the advancement of deep generative models, parametric analysis-
by-synthesis techniques are having a renaissance, with some top-down [96, 57, 98]
as well as bottom-up [62, 22] techniques.
Conditional image generation. Conditional GANs [107, 29, 90], such as
image-to-image translation setups [31], predict an image from a predefined rep-
resentation, e.g. semantic segmentation maps [59, 45], object-attribute graphs
[33, 8], text [102, 68, 53, 66, 71, 67], pose [43, 75, 3], and keypoints [11]. Other se-
tups include using perceptual losses [14], implicit likelihood estimation [44], and
more recently, diffusion models [50, 74]. [81, 49, 48, 80, 89, 23] explore related in-
termediate representations to help generation (mostly of humans or objects) but
none provide the ability to generate and manipulate high-quality scene images
of our method.
Unconditional generation and disentanglement. Rather than use explicit
conditioning, it is possible to learn an image “manifold” with a generative model
such as a VAE [41, 26] or GAN [18] and explore emergent capabilities. GANs
have improved in image quality [65, 16, 101, 10, 35, 37, 38, 36] and are our focus.
Directions of variation naturally emerge in the latent space and can be discovered
when guided by geometry/color changes [32], language or attributes [61, 65, 77, 2,
91], cognitive signals [17], or in an unsupervised manner [21, 78, 63]. Discovering
disentangled representations remains a challenging open problem [46]. To date,
most successful applications have been on data of objects, e.g. faces and cars, or
changing textures for scenes [60]. Similar to us, an active line of work explores
adding 3D inductive biases [54, 51, 52], but individual object manipulation has
largely focused on simple diagnostic scenes [34]. Alternatively, the internal units
of a pretrained GAN offer finer spatial control, with certain units naturally
correlating with object classes [6, 5, 95]. The internal compositionality of GANs
can be leveraged to harmonize images [15, 13] or perform a limited set of edits
on objects in a scene [6, 100, 104]. Crucially, while these works require semantic
supervision to identify units and regions, our work uses a representation where
these factors naturally emerge.

3 Method

Our method aims to learn a representation of scenes as spatial maps of blobs
through the generative process. As shown in Figure 1, a layout network maps
from random noise to a set of blob parameters. Then, blobs are differentiably
splatted onto a spatial grid – a “blob map” – which a StyleGAN2-like decoder [39]
converts into an image. Finally, the blob map is used to modulate the decoder We
train our model in an adversarial framework with an unmodified discriminator
[38]. Interestingly, even without explicit labels, our model learns to decompose
scenes into entities and their layouts.
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Our generator model is largely divided into two parts. First, we apply an
8-layer MLP F to map random noise z ∈ Rdnoise ∼ N (0, Id) to a collection of
blobs parameterized by β = {βi}ki=1 which are splatted onto a spatial H×W ×d
feature grid in a differentiable manner. This process is visualized in Figure 2.
The feature grid is then passed to a convolutional decoder G to produce final
output images. In the remainder of this section, we describe the design of our
representation as well as its implementation in detail.

3.1 From noise to blobs as layout

Fig. 2. Our elliptical blobs β are
parametrized by centroid x, scale s, as-
pect ratio a, and angle θ. We composite
multiple blobs with alpha values that
smoothly decay from blob centers. The
features ϕ or ψ are splatted on their
corresponding blobs and passed to the
decoder.

We map from random Gaussian noise to
distributions of blobs with an MLP F
with dimension dhidden. The last layer of F
is decoded into a sequence of blob prop-
erties β. We opt for a simple yet effec-
tive parametrization of blobs, represent-
ing them as ellipses by their center coor-
dinates x ∈ [0, 1]2, scale s ∈ R, aspect ra-
tio a ∈ R, and rotation angle θ ∈ [−π, π].
Each blob is also associated with a struc-
ture feature ϕ ∈ Rdin and a style feature
ψ ∈ Rdstyle . Altogether, our blob represen-
tation is:

β ∈ R2+1+1+1+din+dstyle ≜ (x, s, a, θ, ϕ, ψ)

Next, we transform the blob parameters to a 2D feature grid by populating
the ellipse specified by β with the feature vectors ϕ and ψ. We do this differ-
entiably by assigning an opacity and spatial falloff to each blob. Specifically,
we calculate a grid α ∈ [0, 1]H×W×k which indicates each blob’s opacity value
at each location. We then use these opacity maps to splat the features ϕ, ψ at
various resolutions, using a single broadcasted matrix multiplication operation.

In more detail, we begin by computing per-blob opacity maps o ∈ [0, 1]H×W .
For each grid location xgrid ∈

{(
w
W , h

H

)}W,H

w=1,h=1
we find the squared Maha-

lanobis distance to the blob center x:

d(xgrid, x) = (xgrid − x)T (RΣRT )−1(xgrid − x), (1)

where Σ = c

[
a 0
0 1

a

]
, R is a 2D rotation matrix by angle θ, and c = 0.02 controls

blob edge sharpness. The opacity of a blob at a given grid location is then:

o(xgrid) = σ (s− d(xgrid, x)) , (2)

where s acts as a control of blob size by shifting inputs to the sigmoid. Intuitively,
this can be thought of as taking a soft thresholding operation on a Gaussian to
define an in-region and an out-region. For example, our model can output a large
negative s < 0 to effectively “turn off” a blob. Rather than taking the softmax to
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normalize values at each location, we use the alpha-compositing operation [64],
which allows us to model occlusions and object relationships more naturally by
imposing a 2.1-D z-ordering [55]:

αi(xgrid) = oi(xgrid)

k∏
j=i+1

(1− oj(xgrid)). (3)

Lastly, our blob mapping network also outputs background vectors ϕ0, ψ0, with
a fixed opacity o0 = 1. Final features at each grid location are the convex com-
bination of blob feature vectors, given by the (k+1) αi scores.

3.2 From blob layouts to scene images

We now describe a function G that converts the representation of scenes as blobs
β described in Section 3.1 into realistic, harmonized images. To do so, we build
on the architecture of StyleGAN2 [38]. We modify it to take in a spatially-varying
input tensor based on blob structure features rather than a single, global vector,
and perform spatially-varying style modulation.

As opposed to standard StyleGAN, where the single style vector w must
capture information about all aspects of the scene, our representation separates
layout (blob locations and sizes) and appearance (per-blob feature vectors) by
construction, naturally providing a foundation for a disentangled representation.

Concretely, we compute a feature grid Φ at 16 × 16 resolution using blob
structure vectors ϕi and use Φ as input to G, removing the first two convolutional
blocks of the base architecture to accommodate the increased resolution. We also
apply spatial style-based modulation [59] at each convolution using feature grids
Ψl×l for l ∈ {16, 32, . . . , 256} computed from blob style vectors ψi.

3.3 Encouraging disentanglement

Intuitively, all activations within a blob are governed by the same feature vector,
encouraging blobs to yield image regions of self-similar properties, i.e. entities
in a scene. Further, due to the locality of convolution, the layout of blobs in the
input must strongly inform the final arrangement of image regions. Finally, our
latent space separates layout (blob location, shape, and size) from appearance
(blob features) by construction. All the above help our model learn to bind
individual blobs to different objects and arrange these blobs into a coherent
layout, disentangling scenes spatially into their component parts.

To further nudge our network in this direction, we stochastically perturb blob
representations β before inputting them to G, enforcing our model to be robust
under these perturbations. We implement this by corrupting blob parameters
with uniform noise δx, δs, and δθ. This requires that blobs be independent of
each other, promoting object discovery and discouraging degenerate solutions
which rely on precise blob placement or shape.

We also experiment with style mixing, where with probability 0.2 we uni-
formly sample between 0 and k blobs to swap, and permute style vectors for
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Fig. 3. Blobs allow extensive image manipulation: We apply a sequence of mod-
ifications to the blob map of an image generated by our model and show the resulting
images outputs at each stage of the editing process, demonstrating the strength of our
learned representation.

these blobs among different batch samples. We find that this intervention harms
our training process since it requires that all styles match all layouts, an as-
sumption we show does not hold in Section 4.3. We also try randomly removing
blobs from the forward process with some probability, but found this hurts train-
ing, since certain objects must always be present in certain kinds of scenes (e.g.
kitchens are unlikely to have no refrigerator). This constraint led to a more
distributed, and therefore less controllable, representation of scene entities.

4 Experiments

We evaluate our learned representation quantitatively and qualitatively and
demonstrate that a spatially disentangled representation of scenes emerges. We
begin by showing that our model learns to associate individual blobs with ob-
jects in scenes, and then show that our representation captures the distribution
of scene layouts. We highlight some applications of our model in Figure 3. Finally,
we use our model to parse the layouts of real scene images via inversion. For more
results, including on additional datasets and ablations, please see Appendix.

4.1 Training and implementation

We largely follow the training procedure set forth in StyleGAN2 [38], with non-
saturating loss [18], R1 regularization every 16 steps with γ = 100 but no path
length regularization, and exponential moving average of model weights [35]. We
use the Adam optimizer [40] with learning rate 0.002 and implement equalized
learning rate for stability purposes as recommended by [38, 35].

We set dnoise = 512. Our layout generator F is an 8-layer MLP with dhidden =
1024 and leaky ReLU activations. We L2-normalize ϕ and ψ vectors output by
the layout generator before splatting. Altogether, the dimension of the last layer
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Fig. 4. Moving blobs to rearrange objects: By modifying coordinates xi of certain
blobs as shown in the middle row, we can perform operations such as rearranging
furniture in bedrooms. Note that since our representation is layered, we can model
occlusions, such as the bed and the dresser in the leftmost and rightmost images.

is dout = k(din + dstyle + 5) + din + dstyle. To compensate for the removal of the
first two convolutional blocks in the generator G, we increase channel widths at
all remaining layers by 50%. We set din and dstyle depending on the number of
blobs k, and values range between 256 and 768. We experiment with k ∈ [5, 50]
depending on the data considered. We set the blob sigmoid temperature c =
0.02 by visual inspection of blob edge hardness. Model performance is relatively
insensitive to jittering parameters. We perturb blob parameters with uniform
noise as δx ∈ [−0.04, 0.04] (around 10px at 256px resolution), δθ ∈ [−0.1, 0.1] rad
(around 6◦), and δs ∈ [−0.5, 0.5] (varying radii of blobs by around 5px).

We train our model on categories from the LSUN scenes dataset [97]. In
particular, we train models on bedrooms; conference rooms; and the union of
kitchens, living rooms, and dining rooms. In the following section, we show results
of models trained on bedroom data with k = 10 blobs. Please see Appendix for
results on more data (Appendix A), further details on our blob parametrization
and its implementation (Appendix C), and ablations (Appendix E).

4.2 Discovering entities with blobs

The ideal representation is able to disentangle complex images of scenes into the
objects that comprise them. Here, we demonstrate through various image ma-
nipulation applications that this ability emerges in our model. Our unsupervised
representation allows effortless rearrangement, removal, cloning, and restyling of
objects in scenes. We also measure correlation between blob presence and se-
mantic categories as predicted by an off-the-shelf network and thus empirically
verify the associations discovered by our model.

Figure 4 shows the result of intervening to manipulate the center coordinates
xi of blobs output by our model, and thus rearranging furniture configu-
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Fig. 5. Removing blobs: Despite the extreme rarity of bedless bedrooms in the train-
ing data, the ability to remove beds from scenes by removing corresponding blobs
emerges. We can also remove windows, lamps and fans, paintings, dressers, and night-
stands in the same manner.

rations. We are able to arbitrarily alter the position of objects in the scene
by shifting their corresponding blobs without affecting their appearance. This
interaction is related to traditional “image reshuffling” where rearrangement of
image content is done in pixel space [83, 4, 72]. Our model’s notion of depth
ordering also allows us to easily de-occlude objects – e.g. curtains, dressers, or
nightstands – that were hidden in the original images, while also enabling the
introduction of new occlusions by moving one blob behind another.

In Figure 5, we show the effect of removing entirely certain blobs from
the representation. Specifically, we remove all blobs but the one responsible for
beds, and show that our model is able to clear out the room accordingly. We also
remove the bed blob but leave the rest of the room intact, showing a remarkable
ability to create bedless bedrooms, despite training on a dataset of rooms with
beds. Figure 3 shows the effect of resizing blobs to change window size; see
Appendix A for further results on changing blob size and shape. In Fig. 6, we
remove a blob that our model – trained on a challenging multi-category union
of scene datasets – has learned to associate with tables across scene categories.

Our edits are not constrained to the set of blobs present in a layout generated
by our model; we can also introduce new blobs. Figure 8 demonstrates the impact
of copying and pasting the same blob in a new location. Our model is able
to faithfully duplicate objects in scenes even when the duplication yields an
image that is out of distribution, such as a room with two ceiling fans.

Our representation also allows performing edits across images. Figure 7 shows
the highly granular redecorating enabled by swapping blob style vectors; we
are able to copy objects such as bedsheets, windows, and artwork from one room
to another without otherwise affecting the rendered scene.

Quantitative blob analysis. Next, we quantitatively study the strong as-
sociations between blobs and semantic object classes. We do so by randomly
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Fig. 6. Removing all sorts of tables: We train BlobGAN on a multi-category
dataset of kitchens, living rooms, and dining rooms. We find that a particular blob
specializes in generating tables across scene types, and feature vectors dictate whether
it becomes a coffee table, kitchen island, or dining table. For many more editing oper-
ations on this dataset and others, please see Appendix.
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Fig. 7. Swapping blob styles: Interchanging ψi vectors without modifying layout
leads to localized edits which change the appearance of individual objects in the scene.

setting the size parameter s of a blob to a large negative number to effectively
remove it. We then use an off-the-shelf segmentation model to measure which
semantic class has disappeared. We visualize the correlation between classes and
blobs in Figure 9 (left); the sparsity of this matrix shows that blobs learn to
specialize into distinct scene entities. We also visualize the distribution of blob
centroids in Figure 9 (right), computed by sampling many different random vec-
tors z. The resultant heatmaps provide a glimpse into the distribution of objects
in training data – our model learns to locate blobs at specific image regions and
control the objects they represent by varying feature vectors.

4.3 Composing blobs into layouts

The ideal representation of scenes must go beyond simply disentangling images
into their component parts, and capture the rich contextual relationships be-
tween these parts that dictate the process of scene formation [9, 27]. In contrast
to previous work in generative modeling of realistic images, our representation
explicitly discovers the layout (i.e., the joint distribution) of objects in scenes.
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Clone paintings Clone ceiling fans Clone beds

Fig. 8. Cloning blobs: We clone blobs in scenes, arrange them to form a new layout,
and show corresponding model outputs. Added blobs are marked with a +.

Fig. 9. Blob spatial preferences: Our model allocates each blob to a certain region
of the image canvas, revealing patterns in the training distribution of objects. We
visualize each blob’s correlation with classes predicted by a segmentation model [84]
(left) as well as the spatial distribution of blob centroids (right).

By solving a simple constrained optimization problem at test-time, we are
able to sample realistic images that satisfy constraints about the underlying
scene, a functionality we call “scene auto-complete”. This auto-complete allows
applications such as filling empty rooms with items, plausibly populating rooms
given a bed or window at a certain location, and finding layouts that are com-
patible with certain sets of furniture.

We ground this ability quantitatively by demonstrating that “not everything
goes with everything” [11] in real-world scenes – for example, not every room’s
style can be combined with any room’s layout. We show that our scene auto-
complete yields images that are significantly more photorealistic than naïvely
combining scene properties at random, and outperforms regular StyleGAN in
image quality, diversity as well as in fidelity of edits.

Conditionally sampling scenes: We can construct an ad-hoc conditional
distribution by optimizing random inputs to match a set of constraints in the
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Empty room Furnished rooms

Fig. 10. Generating and populating empty rooms: We show different empty
rooms, each with their own background vector ψ0, as well as furnished rooms given by
latents z optimized to match these background vectors. This simple sampling procedure
yields a diverse range of layouts to fill the scenes. Note that while empty rooms do not
appear in training data, our model is reasonably capable of generating them.

form of properties c of a source image’s blob map β:

c ⊂
k⋃

i=0

{xsrc
i , ssrci , asrc

i , θsrci , ϕsrc
i , ψsrc

i } (4)

For example, c = {ϕsrc
0 , ψsrc

0 } constrains the background of an output image to
match that of a source image, and c = {xsrc

i , ssrci , asrc
i } constrains the shape (but

not the appearance) of the i-th blob to match the source.
We obtain conditional samples by drawing initial noise vectors zinit ∼ N (0, Id)

and optimizing F (zinit) to match the constraint set c with an L2 loss, leaving
other parameters free. We use the Adam optimizer with learning rate 0.01 and
find that between 50 and 300 iterations, which complete in around a second on
an NVIDIA RTX 3090, give zoptim vectors that sufficiently match constraints.
We then set the final layout to be c ∪ {βoptim \ c}, i.e. the initial constraints
combined with the free parameters given by the optimized noise vectors, and de-
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Fig. 11. Scene auto-complete: Various conditional generation problems fall under
the umbrella of “scene auto-complete”, i.e. using our layout network F to sample dif-
ferent scenes satisfying constraints on a subset of blob parameters. We show layout-
conditioned style generation as well as prediction of plausible scenes given the loca-
tion and size (but not style) of beds. Rather than using F to plausibly auto-complete
scenes, we can also generate a random scene and simply override parameters of inter-
est to match desired values. As shown on the right, such scenes have objects inserted,
removed, reoriented, or otherwise disfigured due to incompatibility.

code layouts into images as described in Section 3.2. In effect, this process finds
new scenes known by our model to be compatible with the specified constraints,
as opposed to randomly drawn from an unconditional distribution.

We examine applications of our scene auto-complete and compare it to scenes
generated by baseline approaches in Figures 10 and 11. Scene auto-complete
yields images that are both more realistic and more faithful to the desired im-
age operations. We quantitatively demonstrate this in Table 1, where we show
that using auto-complete to find target images whose properties to apply for
conducting edits significantly outperforms the use of randomly sampled targets
and/or models such as StyleGAN not trained with compositionality in mind.

To evaluate image photorealism after an edit, we calculate FID [25] on au-
tomatically edited images. We must also ensure that image quality does not
come at the expense of sample diversity; to this end, we measure the average
LPIPS [103] distance between images before and after the edit and refer to this
as Paired Distance (PD). We also measure the expected distance between pairs
of edited images to gauge whether edits cause perceptual mode collapse, and
call this Global Diversity (GD). Finally, we confirm that our editing operations
stay faithful to the conditioning provided. For predicting style from layout, we
simply report the fraction of image pixels whose predicted class label as output
by a segmentation network [84] remains the same. For localized object edits, we
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Layout → Styles Window → Room Bed → Room Painting → Room
FID ↓ PD ↑ GD ↑ C ↑ FID PD GD C FID PD GD C FID PD GD C

S
ty

le
G

A
N 2 coarse 4.23 0.75 0.77 46.5 - - - - - - - - - - - -

3 coarse 5.04 0.73 0.76 55.3 - - - - - - - - - - - -
4 coarse 5.58 0.71 0.76 62.9 - - - - - - - - - - - -

B
lo

b
G

A
N Random 8.10 0.72 0.74 47.9 6.41 0.72 0.73 17.4 10.88 0.67 0.73 52.6 6.31 0.72 0.73 7.7

Conditional 4.59 0.70 0.74 55.2 4.75 0.67 0.72 27.2 7.12 0.64 0.72 60.0 4.58 0.69 0.73 13.0
+ source Φ 5.06 0.68 0.74 63.6 - - - - - - - - - - - -

Table 1. Not everything goes with everything: We edit images by overriding
properties in target images either generated at random or conditionally sampled using
our model. By varying the network depth at which we begin to swap styles in StyleGAN,
we tune a knob between image quality and edit consistency. To further preserve global
layout and improve consistency, our model can also use structure grids Φ from the
source image. PD = paired distance, GD = global diversity, C = consistency. In all
cases, scene auto-complete outperforms baselines. Metrics are defined in the main text.

report the intersection-over-union of the set of pixels whose prediction was the
target class before and after edit. We refer to this metric as Consistency (C).

Our results verify the intuition that, e.g., not every configuration of furniture
can fit a bed at a given location. Please see Appendix D for more results.

4.4 Evaluating visual quality and diversity

FID ↓ Precision ↑ Recall ↑
StyleGAN2 3.85 0.5932 0.4492
BlobGAN 3.43 0.5974 0.4463

Table 2. BlobGAN achieves visual quality
competitive with StyleGAN2 [39] on LSUN
Bedrooms. Our samples are more realistic
but capture less of the data distribution
[42], perhaps by rejecting unconventional or
malformed scenes in the training data.

Our model achieves perceptual real-
ism competitive with previous work.
In Table 2, we report FID [25] as well
as improved precision and recall [42],
which capture realism and diversity
of samples. Bedroom images gener-
ated by our model appear more re-
alistic than StyleGAN’s [37], but less
diverse. We hypothesize this is due
to the design of our representation,
which rejects strange scene configura-
tions that cannot be modeled by blobs. When trained on the challenging union
of multiple LSUN indoor scene categories, BlobGAN outperforms StyleGAN2,
indicating an ability to scale to harder data. See Appendix A for details.

4.5 Parsing images into regions

Though our representation is learned on generated (i.e. fake) images, in Fig-
ure 12 we show that it can represent real images via inversion. We follow best
practices [106, 1, 69, 87, 7] for inversion: We train an encoder to predict blob
parameters, reconstructing both real and fake images, and then optimize en-
coder predictions to better reconstruct specific inputs. While this method leads
to uneditable, off-manifold latents in previous work [70], we find our blob repre-
sentation to be more robust in this sense and amenable to naïve optimization.
Importantly, we find that the same manipulations described above can be readily
applied to real images after inversion. See Appendix B for more information.
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Real image Inverted image Blobs Move objects Remove bed Remove other

Fig. 12. Parsing real images via inversion: Our representation can also parse real
images by inverting them into blob space. We can remove and reposition objects in
real images – spot the differences from the original!

5 Conclusion

We present BlobGAN, a mid-level representation for generative modeling and
parsing of scenes. Taking random noise as input, our model first outputs a set
of spatial, depth-ordered blobs, and then splats these blobs onto a feature grid.
This feature grid is used as input to a convolutional decoder which outputs
images. While conceptually simple, this approach leads to the emergence of a
disentangled representation that discovers entities in scenes and their layout.
We demonstrate a set of edits enabled by our approach, including rearranging
layouts by moving blobs and editing styles of individual objects. By removing or
cloning blobs, we are even able to generate empty or densely populated rooms,
though none exist in the training set. Our model can also parse and manipulate
the layout of real images via inversion.
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Fig. 13. Honey, I shrunk the conference room! As in Figure 3, we show the effect
of resizing blobs in generated images. Here, we resize blobs corresponding to tables and
chairs, and render identical rooms with shrunken furniture.
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Fig. 14. Moving desks and chairs (conference room): As in Figure 4, we show
the effect of moving blobs in generated images. Here, we move blobs corresponding to
tables and chairs, and render identical rooms with shifted furniture.

Appendix A BlobGAN on other datasets

In the main text, we primarily showed results on LSUN bedrooms [97]. Below,
we show that our model can be applied to other datasets and room types. We
provide qualitative and quantitative results on our models trained on the chal-
lenging LSUN conference room dataset, as well as a joint dataset combining
LSUN kitchens, dining rooms, and living rooms [97]. As with bedrooms, our
model’s images are competitive with previous work in terms of photorealism,
and in addition allow extensive manipulation of images. Please see Table 3 for
quantitative evaluation. We show image samples and edits on them in Figures
19, 13, 14, 15, 23, 22, and 16.
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Fig. 15. Removing some or all windows (kitchen, living room, dining room):
As shown in Figure 5, we can remove windows from complex scenes, though they
are often hidden behind cluttered configurations of furniture. We can control which
windows to remove by selecting only some of the relevant blobs.

O
ri
g
in

a
l

A
ft
e
r 

e
d

it
B

lo
b

 e
d

it
s

Fig. 16. Moving tables and chairs (kitchen, living room, dining room): Our
representation can easily move tables and any associated chairs, by changing the lo-
cation of blobs 42 (table) and 30 (chairs). Since the two move together, we only show
one arrow to represent the edit.

Appendix B Modeling real images with BlobGAN

We show additional results on inversion and editing of real images in Figures 17
and 18. Images are drawn from the LSUN bedrooms validation set, which our
model does not see during the training process.

B.1 Implementation details

In Section 4.5 and Figure 12, we demonstrate that real images can be inverted
and manipulated with our model. Here, we provide additional details regarding
the encoder training procedure. We take an encoder architecture E in the same
form as the StyleGAN2 [39] discriminator, without mini-batch statistic discrimi-
nation. We use E for inverting images by having the last layer output a long flat
vector, which we segment into blob parameters. In addition to reconstructing
both real and synthetically generated images with LPIPS [103] and L2 penal-
ties, we require the parameters β̂ to match the ground truth parameters β in
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Real image Inverted image Blobs Move objects Remove bed Remove other

Fig. 17. Parsing real images via inversion: We show the flexibility of our learned
representation by applying edits to real images inverted into blob space. We can remove
and reposition objects in real images – spot the differences from the original!
the case of inverting generated images. Our overall loss is:

Linversion = LLPIPS (xreal, G(E(xreal))) + LLPIPS(xfake, G(E(xfake))) (5)
+ L2(xreal, G(E(xreal))) + L2(xfake, G(E(xfake)))

+ λL2(βfake, E(xfake)),

with λ = 10 controlling the strength of the blob reconstruction loss. Taking the
L2 loss on blob parameters as a flattened vector would heavily emphasize recon-
structing the high-dimensional features, over the important, low-dimensional,
scalar quantities of blob locations and sizes. Instead, we compute L2 separately
over each blob attribute and take the mean.

We then further optimize the blob parameters to reconstruct the target im-
age, with LPIPS and L2 losses and the Adam optimizer [40] with learning rate
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Real image Inverted image Blobs Move objects Remove bed Remove other

Fig. 18. Parsing real images via inversion: More results on inversion of real images.

0.01 for 200 steps. While better fitting the input image, this method potentially
deviates from the manifold of latents that yield realistic images [1, 70], thus
severely impeding editing abilities. Previously proposed solutions offer regular-
izations to keep the latents on this “manifold” [92, 105, 93]. However, we find
our blob representation to be more robust in this sense, and latents yielded by
this naïve optimization still amenable to editing.

Appendix C Blob parametrization

We represent the blob aspect ratio a as two scalar outputs a0, a1, sigmoided
and then normalized to have a fixed product a0a1; we find this to train more
stably than one aspect ratio. We represent the blob angle θ with two scalars
e0, e1, from which we construct a unit-normalized axis of rotation e. We find
this representation to train far more stably than others, such as regressing to a
scalar θ or other parametrizations of Σ like log-Cholesky [48, 76].

We also experimented with alternate representations, such as closed-form
ellipses and rectangles as well as Gaussian mixture models. However, we found
gradient flow to blob parameters ill-behaved with rectangles and other explicitly
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Fig. 19. Removing screens in conference rooms. As in Figure 5, we show the effect
of removing certain blobs from generated images. Here, we remove blobs corresponding
to screens from images of conference rooms.

LSUN Conference LSUN Kitchen+Living+Dining

FID ↓ Precision ↑ Recall ↑ FID ↓ Precision ↑ Recall ↑

StyleGAN2 [39] 6.21 0.5475 0.4554 4.63 0.6005 0.4397
BlobGAN 6.94 0.5297 0.4485 4.41 0.5818 0.4661

Table 3. On challenging collections of conference rooms and various types of indoor
rooms in homes, our model is highly competitive with a StyleGAN2 baseline, while
enabling all the applications of the BlobGAN representation. Our model outperforms
StyleGAN2 given an equal number of gradient steps (1.5M) on the difficult union of
various LSUN indoor scene categories, as measured by FID.

defined shapes, even with tricks like gradual opacity falloff, and these models
failed to train. With GMMs, depth ordering and occlusions are lost, and blob
size and shape depend on other blobs, harming performance. Our model is robust
w.r.t. c, and 0.005 ≤ c ≤ 0.05 all train well.

C.1 Limitations

Though our blob representation allows for powerful unsupervised, disentangled
scene representations, our model still suffers from various shortcomings. For ex-
ample, trained networks struggle to disentangle smaller objects (e.g. lamps on
desks), perspective from object shape, and, occasionally, foreground appearance
from background. Further, as shown in the main paper, blobs display a predilec-
tion toward certain canvas regions, though whether this is an artifact of dataset
bias or model design remains unclear.

Appendix D Comparison to previous work

In Figures 20 and 21, we show random samples of untruncated images before
and after style swapping. At a given level of photorealism as measured by FID,
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Original image Swapped image Original segments Swapped segments Difference map

StyleGAN style swapping: FID 5.04, Consistency 55.3%

Fig. 20. Style swapping with StyleGAN: We show randomly sampled untruncated
StyleGAN images before and after style swapping at layer 4, attaining an FID of
5.04 and layout consistency of 55.3%. The difference map shows the normalized KL
divergence of the predicted per-pixel logits before and after swapping.

our model is able to produce layouts far more consistent with the original image
thanks to its disentangled, compositional representation.

Lastly, we visualize the trade-off between the precision and recall metric [42]
as we change the truncation value in Figure 24. Our model generates more per-
ceptually realistic images than StyleGAN at all truncation values 0.0 ≤ w ≤ 1.0,
although the maximal recall at w = 1.0 is lower. In particular, our untruncated
model performs better at both precision and recall than all StyleGAN-generated
images with w < 0.7. These results provide evidence for the suggestion that our
model’s FID is higher because it cannot properly model outlier bedroom scenes
using the blob representation.
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Original image Swapped image Original segments Swapped segments Difference map

BlobGAN style swapping: FID 5.06, Consistency 63.6%

Fig. 21. Style swapping with BlobGAN: We show randomly sampled untruncated
BlobGAN images before and after style swapping, attaining an FID of 5.06 and layout
consistency of 63.6%. The difference map shows the normalized KL divergence of the
predicted per-pixel logits before and after swapping.

Appendix E Model implementation

E.1 Hyperparameters and training

For the bedroom model trained in the paper, we use din = 768 and dstyle = 512.
Our generator with k = 10 blobs has 57.2 million parameters: 21.3 million in F
and the remaining 35.9 million in G.

The model trained on LSUN conference rooms uses k = 20 and has 34.5M
parameters in F ; all other hyperparameters are as in the bedroom model.

The model trained on the union of LSUN kitchens, living rooms, and dining
rooms uses k = 45 due to the increased complexity of the combined dataset, and
thus reduces din = 256 and dstyle = 256. This model has 61.3 million parameters
in the generator: 31.3M in F and 30.0M in G.

We train all models for 1.5 million gradient steps with batch size 24 per-GPU
across 8 NVIDIA A100 GPUs, except the bedrooms models (both BlobGAN and
StyleGAN2), which are trained for 2.8 million steps. On the bedrooms model, we
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Fig. 22. Scene auto-complete: Various conditional generation problems fall under
the umbrella of “scene auto-complete”, i.e. optimizing random noise vectors to match a
set of blob parameters when run through our layout network F . We show prediction of
plausible scenes given the location and size (but not style) of dressers and nightstands.
The model must not only predict the arrangement of the missing blobs, but also assign
all blobs realistic appearance. When sampling target images randomly, objects are often
randomly inserted, removed, reoriented, or otherwise disfigured due to incompatibility.
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Fig. 23. Swapping blob styles: Interchanging ψi vectors without modifying layout
leads to localized edits which change the appearance of individual objects in the scene.

experiment with k = 20 blobs as well as k = 10 blobs with no jitter. We find that
results are less interpretable with 20 blobs and disentanglement is lower, perhaps
since the model can “approximate” slightly higher-frequency data by using more
blobs. This model also has a worse FID of 3.73. We also train a model with
k = 10 blobs and no jitter, which attains comparable FID to the model with
jitter, but with slightly reduced editing capabilities. Across all experiments, we
find that changing k minorly impacts FID. Extra blobs mostly go unused, but
too few blobs mean objects cannot be properly separated.

E.2 Image sampling

We sample all images shown in the paper and Supplementary Material with
truncation. We truncate latents at the penultimate layer of F , since truncating
in blob parameters space leads to undesirable behavior (e.g. biasing blob coordi-
nates toward the center of the image). Then, truncation of random noise vector
z’s output of blob parameters β with a weight of w gives:

βtrunc = FL

(
(1− w) E

z′∼N (0,I)
[F0:−1(z

′)] + wF0:L−1(z)

)
(6)



30 D. Epstein, T. Park, R. Zhang, E. Shechtman, A.A. Efros

Fig. 24. We plot the precision-recall curve, by varying truncation values w, on LSUN
bedrooms. Our untruncated model outperforms StyleGAN2 [39] with truncation values
w < 0.7 in both precision and recall of generated images. While still outperforming
StyleGAN2 on FID (Table 2), our model operates at a different point on this curve
than StyleGAN2 – higher precision and lower recall – supporting the hypothesis that
BlobGAN’s FID suffers due to its inability to model long-tail, oddly-formed scenes.

Where Fl:m represents layers l through m, inclusive, of the network which has
L layers total. In practice, we approximate the expectation by sampling 100,000
random noise vectors. We use w = 0.6 or w = 0.7 for all bedroom images.
w = 0.5 for images of conference rooms, and w = 0.4 for other indoor scenes,
except when indicated otherwise (w = 1 means no truncation).

E.3 Object style swapping

When swapping styles between objects, rather than splatting the target (new)
object’s style ψi,tgt directly onto the source (original) image’s background style
ψbg, src, we interpolate first between ψi,tgt and then ψbg,tgt (i.e., the target im-
age’s background) at the border of the blob, and then splat this onto the back-
ground ψbg, src.

We find this necessary since the model learns to treat features on the border
of a blob, which are typically a convex combination of the blob feature and the
background feature, as belonging to the blob; when an unanticipated background
feature becomes part of the feature along the border, the model is more prone to
producing artifacts. This simple procedure mitigates this undesirable behavior
and is trivially fully automated.

E.4 Spatial modulation

In StyleGAN2, convolution weights at layer l, θl ∈ Rdl×dl−1×k×k, are multi-
plied by an affine-transformed style vector w ∈ Rd

l and then unit-normalized
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to perform modulation. Since our modulation varies spatially, we instead mul-
tiply input feature maps xl−1 ∈ Rdl−1×h×w by a unit-normalized style grid
Ψl ∈ Rdstyle×h×w with a per-pixel affine transform, before convolving with unit-
normalized weights θl to output new feature maps xl. Affine transforms f map
from dstyle to dl. More specifically, in StyleGAN2, modulated convolution is im-
plemented as:

xl = xl−1 ∗
f(wl)⊙ θl

∥f(wl)⊙ θl∥2
(7)

Since our styles are spatially varying, we cannot multiply convolution weights
by the same broadcasted tensor throughout, and must modify our modulation:

xl =

(
xl−1 ⊙

f(Ψl)

∥f(Ψl)∥2

)
∗ θl
∥θl∥2

(8)

We find this normalization scheme, also used in [59, 60], to work well in practice
despite not having the same statistical guarantees as the original derivation.

E.5 Uncurated samples

In Figures 25 and 26, we show randomly sampled images from our model and
StyleGAN2 trained on LSUN Bedrooms. We show the same on LSUN kitchens,
living rooms, dining rooms, and conference rooms in Figures 27, 28, 29, and 30.
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BlobGAN, truncation=1 (no truncation)

BlobGAN, truncation=0.8

BlobGAN, truncation=0.6

Fig. 25. We show uncurated random image samples from BlobGAN on LSUN bed-
rooms at various truncation levels. Please view zoomed in and in color for best results.
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StyleGAN2, truncation=1 (no truncation)

StyleGAN2, truncation=0.8

StyleGAN2, truncation=0.6

Fig. 26. We show uncurated random image samples from StyleGAN2 on LSUN bed-
rooms at various truncation levels. Please view zoomed in and in color for best results.
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BlobGAN, truncation=1 (no truncation)

BlobGAN, truncation=0.8

BlobGAN, truncation=0.6

Fig. 27. We show uncurated random image samples from BlobGAN on LSUN kitchens,
living rooms, and dining rooms at various truncation levels. Please view zoomed in and
in color for best results.
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StyleGAN2, truncation=1 (no truncation)

StyleGAN2, truncation=0.8

StyleGAN2, truncation=0.6

Fig. 28. We show uncurated random image samples from StyleGAN2 on LSUN
kitchens, living rooms, and dining rooms at various truncation levels. Please view
zoomed in and in color for best results.
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BlobGAN, truncation=1 (no truncation)

BlobGAN, truncation=0.8

BlobGAN, truncation=0.6

Fig. 29. We show uncurated random image samples from BlobGAN on LSUN confer-
ence rooms at various truncation levels. Please view zoomed in and in color for best
results.
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StyleGAN2, truncation=1 (no truncation)

StyleGAN2, truncation=0.8

StyleGAN2, truncation=0.6

Fig. 30. We show uncurated random image samples from StyleGAN2 on LSUN con-
ference rooms at various truncation levels. Please view zoomed in and in color for best
results.
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