Abstract
Identity swapping and de-identification are two essential applications of identity-disentangled face image generation. Although sharing a similar problem definition, the two tasks have been long studied separately, and identity-disentangled face generation on megapixels is still under exploration. In this work, we propose StyleFace, a unified framework for \(1024^2\) resolution high-fidelity identity swapping and de-identification. To encode real identity while supporting virtual identity generation, we represent identity as a latent variable and further utilize contrastive learning for latent space regularization. Besides, we utilize StyleGAN2 to improve the generation quality on megapixels and devise an Adaptive Attribute Extractor, which adaptively preserves the identity-irrelevant attributes in a simple yet effective way. Extensive experiments demonstrate the state-of-the-art performance of StyleFace in high-resolution identity swapping and de-identification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdal, R., Qin, Y., Wonka, P.: Image2stylegan: How to embed images into the stylegan latent space? In: ICCV, Oct 2019
Abdal, R., Qin, Y., Wonka, P.: Image2stylegan++: How to edit the embedded images? In: CVPR, Jun 2020
Cao, J., Liu, B., Wen, Y., Xie, R., Song, L.: Personalized and invertible face de-identification by disentangled identity information manipulation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3334–3342, Oct 2021
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: Vggface2: a dataset for recognising faces across pose and age. In: FG 2018, pp. 67–74 (2018)
Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: an efficient framework for high fidelity face swapping. In: ACM MM, pp. 2003–2011 (2020)
Deng, Y., Yang, J., Chen, D., Wen, F., Tong, X.: Disentangled and controllable face image generation via 3d imitative-contrastive learning. In: CVPR (2020)
Donahue, C., Lipton, Z.C., Balsubramani, A., McAuley, J.J.: Semantically decomposing the latent spaces of generative adversarial networks. In: ICLR (2018)
Gafni, O., Wolf, L., Taigman, Y.: Live face de-identification in video. In: ICCV, pp. 9377–9386 (2019)
Gao, G., Huang, H., Fu, C., Li, Z., He, R.: Information bottleneck disentanglement for identity swapping. In: CVPR, pp. 3404–3413, Jun 2021
Gu, X., Luo, W., Ryoo, M.S., Lee, Y.J.: Password-conditioned anonymization and deanonymization with face identity transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 727–743. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_43
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2020
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. Rep. 07–49, University of Massachusetts, Amherst, Oct 2007
Huang, Y., et al.: Curricularface: adaptive curriculum learning loss for deep face recognition. In: CVPR, pp. 1–8 (2020)
Härk”onen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: discovering interpretable gan controls. In: Proceedings of NeurIPS (2020)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR (2018). https://openreview.net/forum?id=Hk99zCeAb
Karras, T., et al.: Alias-free generative adversarial networks. In: NIPS (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lee, C.H., Liu, Z., Wu, L., Luo, P.: Maskgan: towards diverse and interactive facial image manipulation. In: CVPR (2020)
Li, J., Li, Z., Cao, J., Song, X., He, R.: Faceinpainter: high fidelity face adaptation to heterogeneous domains. In: CVPR, pp. 5089–5098, Jun 2021
Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: CVPR, Jun 2020
Liu, Y., Wei, F., Shao, J., Sheng, L., Yan, J., Wang, X.: Exploring disentangled feature representation beyond face identification. In: CVPR (2018)
Maximov, M., Elezi, I., Leal-Taixé, L.: CIAGAN: conditional identity anonymization generative adversarial networks. In: CVPR, pp. 5446–5455 (2020)
Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_38
Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: ICCV (2019)
Ruiz, N., Chong, E., Rehg, J.M.: Fine-grained head pose estimation without keypoints. In: CVPRW, pp. 2074–2083 (2018)
Sanyal, S., Bolkart, T., Feng, H., Black, M.: Learning to regress 3d face shape and expression from an image without 3d supervision. In: CVPR (2019)
Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)
Shen, Y., Yang, C., Tang, X., Zhou, B.: Interfacegan: interpreting the disentangled face representation learned by gans. In: TPAMI (2020)
Song, G., et al.: Agilegan: stylizing portraits by inversion-consistent transfer learning. In: SIGGRAPH, Jul 2021
Sun, K., et al.: High-resolution representations for labeling pixels and regions. arXiv (2019)
Wang, H., et al.: Cosface: Large margin cosine loss for deep face recognition. In: CVPR, pp. 5265–5274 (2018)
Wang, T., Zhang, Y., Fan, Y., Wang, J., Chen, Q.: High-fidelity gan inversion for image attribute editing. arxiv:2109.06590 (2021)
Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML, pp. 9929–9939 (2020)
Wang, Y., et al.: Hififace: 3d shape and semantic prior guided high fidelity face swapping. In: IJCAI-2021, pp. 1136–1142 (8 2021)
Yamaç, M., Ahishali, M., Passalis, N., Raitoharju, J., Sankur, B., Gabbouj, M.: Reversible privacy preservation using multi-level encryption and compressive sensing. In: EUSIPCO, pp. 1–5 (2019)
Yang, T., Ren, P., Xie, X., Zhang, L.: Gan prior embedded network for blind face restoration in the wild. In: CVPR (2021)
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv: 1411.7923 (2014)
Zhu, Y., Li, Q., Wang, J., Xu, C., Sun, Z.: One shot face swapping on megapixels. In: CVPR, pp. 4834–4844, Jun 2021
Acknowledgements
This work was partly supported by the Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102) and the National Science of Foundation China (61972250, 72061127003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Luo, Y. et al. (2022). StyleFace: Towards Identity-Disentangled Face Generation on Megapixels. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-19787-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19786-4
Online ISBN: 978-3-031-19787-1
eBook Packages: Computer ScienceComputer Science (R0)