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Abstract. Motion transfer aims to transfer the motion of a driving video to a
source image. When there are considerable differences between object in the driv-
ing video and that in the source image, traditional single domain motion transfer
approaches often produce notable artifacts; for example, the synthesized image
may fail to preserve the human shape of the source image (cf . Fig. 1 (a)). To
address this issue, in this work, we propose a Motion and Appearance Adapta-
tion (MAA) approach for cross-domain motion transfer, in which we regularize
the object in the synthesized image to capture the motion of the object in the
driving frame, while still preserving the shape and appearance of the object in
the source image. On one hand, considering the object shapes of the synthesized
image and the driving frame might be different, we design a shape-invariant mo-
tion adaptation module that enforces the consistency of the angles of object parts
in two images to capture the motion information. On the other hand, we intro-
duce a structure-guided appearance consistency module designed to regularize
the similarity between the corresponding patches of the synthesized image and
the source image without affecting the learned motion in the synthesized image.
Our proposed MAA model can be trained in an end-to-end manner with a cyclic
reconstruction loss, and ultimately produces a satisfactory motion transfer result
(cf . Fig. 1 (b)). We conduct extensive experiments on human dancing dataset
Mixamo-Video to Fashion-Video and human face dataset Vox-Celeb to Cufs; on
both of these, our MAA model outperforms existing methods both quantitatively
and qualitatively.

1 Introduction

Given a source image and a driving video of the same object, motion transfer (a.k.a.
image animation) aims to generate a synthesized video that mimics the motion of the
driving video while preserving the appearance of the source image. It recently received
increasing attention, due to its potential applications in real-world scenarios, such as
face swapping[38,31,39], dance transferring[5], etc.
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Fig. 1: Motion transfer results. (a) is generated by traditional motion transfer model
trained on source domain videos only and (b) is generated by our proposed MAA model

Many works in this field focus on the single-domain motion transfer [30,31,32],
where the driving video and source image come from the same domain. However, in real
applications, there are often requirements to transfer motion among different domains.
For example, as shown in Fig 1, the e-commerce companies might be interested in
animating a fashion model to attract consumers by learning the robot dance from a
Mixamo character. However, due to the differences in shape and cloth between the
Mixamo character and the fashion model, traditional single-domain motion transfer
approaches often produce notable artifacts in the synthesized image (e.g., failing to
preserve the human shape of the fashion model (cf . Fig. 1 (a))).

To this end, in the present work, we study the cross-domain motion transfer problem
and propose a novel Motion and Appearance Adaptation (MAA) approach to address
this issue. Specifically, traditional motion transfer methods usually take two arbitrary
frames of the same video as source image and driving frame for learning motion with
a reconstruction loss, because the two frames share the same appearance and shape.
However, such training mode cannot be directly applied to the cross-domain motion
transfer because no ground-truth is available. In our proposed MAA approach, we build
a cyclic reconstruction pipeline inspired by CycleGAN[42] and cross-identity[19]. In
particular, given a source image and a driving frame obtained from different domains,
we first obtain a synthesized image using a basic motion transfer (MT) model, e.g., the
model in[31] or[32]. We next arbitrarily take another frame from the driving video as
the source image and the synthesized image as a driving frame, and input them into
the basic MT model to produce the second synthesized image. Because the second
synthesized image should mimic both the motion and appearance of original driving
frame, a cyclic reconstruction loss can be applied for training. In this way, we obtain a
motion transfer model for cross-domain motion transfer.

Moreover, since the source image and driving frame are drawn from different do-
mains, while the topology of the object structure (e.g., the skeleton) is similar, the con-
figurations of the object structure (e.g., the human body shape) often deviate. When
doing motion transfer, we should be aware of such difference and keep the object shape
of synthesized image be similar to the source image while unaffected by the driving
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frame. For this purpose, we design a shape-invariant motion adaptation module and a
structure-guided appearance consistency module to regularize the basic motion transfer
model.

Specifically, in the shape-invariant motion adaptation module, we design an angle
consistency loss to enforce the angles of the corresponding object parts in the synthe-
sized image to be similar to those of the driving frame, such that the motion of this
frame can be mimicked well without changing the object shape. In the structure-guided
appearance consistency module, we extract image patches from the synthesized im-
age and the source images based on the object structure and enforce the corresponding
patches to be similar; this ensures that the appearance of the synthesized image and the
source image are consistent, even though the motions of the two images are different.

The entire process can be trained in an end-to-end manner, and finally our MAA
model can effectively perform motion transfer across domains while also properly pre-
serving the shape and appearance of the object (cf . Fig. 1 (b)). We validate our proposed
approach on two pairs of datasets: the human body datasets Mixamo-Video to Fashion-
Video[40] and the human face datasets Vox-Celeb[28] to Cufs[37]. Extensive experi-
mental results demonstrate the effectiveness of our proposed approach. Our source code
will be released soon.

2 Related Work

Motion Transfer: Current motion transfer approaches can be categorized into two
types: model-based and model-free approaches. The model-based approaches mainly
focus on human body pose transfer[26,27,3], which utilize a pre-trained pose estimator
or key point detector to extract the pose of driving image as a guidance information. And
a number of researchers followed such setting[23,29,43,22,16,20]. Moreover, a series of
works apply this model-based pattern on human facial expression transfer[4,7,13]. Like
body pose transfer, they also employ a pre-trained facial landmark detector to model
the facial expression.

The model-free approaches[30,31,19,32,34] does not rely on pre-trained third-party
models, and extend the model-based method to arbitrary objects. Aliaksandr et al. [30]
proposed a model-free motion transfer model Monky-Net that can apply motion transfer
on arbitrary objects with an unsupervised key point detector trained by reconstruction
loss [18]. Aliaksandr et al. [31] further improved Monkey-Net to FOMM to solve the
large motion problem. The unsupervised key point detector is also utilized in FOMM,
with local affine transformations being added for motion modeling. A generator mod-
ule is utilized to generate final result with the warped source image feature. Subin et
al. [19] proposed pose attention mechanism with an unsupervised key point detector
to model motion. Recently, Aliaksandr et al. [32] improved FOMM with an advanced
motion model and background motion model to MRAA. Although promising results
are achieved for the single domain motion transfer, these methods might suffer from
performance degradation when the source image and driving video come from differ-
ent domains, where a considerable appearance difference often exists. Recently, Wang
et al. [36] used encoder based motion transfer approach which can be applied to the
cross-domain scenario, and better results are achieved compared with the single do-
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main motion transfer Monkey-Net model. In contrast, our proposed MAA approach is
a general framework, and can integrate traditional motion transfer model like FOMM
and MRAA to produce excellent results for large motion.

Domain Adaptation: Many works have been proposed to handle the scenario where
the training and test data comes from different domains for different computer vi-
sion tasks , e.g., classification [8], semantic segmentation [25,24,10,11], object detec-
tion [6,9], pose estimation[21,41], etc. A majority of works were developed to learn
domain-invariant features using the domain adversarial learning [35,12]. Cross-domain
motion transfer is more complicated, since we need to capture motion from the the
driving video while preserving the appearance from the source domain. Nevertheless,
the strategies proposed in traditional domain adaptation works might be useful to help
motion transfer. For example, we apply the cyclic training pipeline inspired by Cycle-
GAN [42], and build our patch-based appearance consistency module based on Patch-
GAN [17].

3 Methodology

In this section, we present our Motion and Appearance Adaptation approach for cross-
domain motion transfer. Formally, let us denote a driving video as Vd = {Iid|Ti=1},
where each Iid is a driving frame, while a source image is denoted as Is; thus, the task of
motion transfer is to synthesize a new video V̂d = {Îid|Ti=1}, where each Îd adequately
captures the object motion in the corresponding driving frame Iid while also preserving
the object appearance of the source image Is.

The appearance of an object roughly consists of two aspects, shape and texture. The
shape largely refers to its geometric property (e.g., length, slimness, etc.), while the
texture usually means how the object looks like regardless of its shape (e.g., dresses
with different colors). Traditional motion transfer methods generally assume that the
driving frame and the source image are derived from the same domain, where they
implicitly suppose the object shapes are similar. Consequently, when the source image
is derived from a new domain with different object shapes, these methods often fail to
preserve the shape of the object in the source image.

In this work, we study the cross-domain motion transfer problem, in which the
source image and driving frame are from different domains. In other words, there might
be considerable differences in appearance between them in terms of both shape and
texture. An example is given in Fig. 1, where both the clothes and body shapes of the
fashion model and the Mixamo character exhibit notable differences.

In what follows, we first present an overview of the pipeline of our proposed MAA
approach in Sec. 3.1, after which we present the shape-invariant motion adaptation
(SIMA) module and structure-guided appearance consistency (SGAC) module in Sec. 3.2
and Sec. 3.3 respectively; these effectively learning the motion and appearance from the
driving frame and source image, respectively.

3.1 Overview

We design a cyclic training pipeline for cross-domain motion transfer, as shown in the
right-hand part of Fig. 2. The pipeline consists of a basic motion transfer model, our
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Fig. 2: The pipeline of our proposed method. The left-hand side is the architecture of the
traditional single domain motion transfer model FOMM[31], which is used as a basic
motion transfer model in our approach. Moreover, the right-hand side is the framework
of our proposed MAA method where we design a cyclic reconstruction loss (CYC), a
shape-invariant motion adaptation (SIMA) and a structure-guided appearance consis-
tency (SGAC) module

proposed shape-invariant motion adaptation module and structure-guided appearance
consistency module, and a cyclic loss.

Basic Motion Transfer Model: The basic motion transfer (MT) model follows the
traditional motion transfer model[31,32]. We here illustrate the basic MT model by
taking FOMM[31] as an example, and other models like[32] can be similarly integrated
into our pipeline.

As shown in the left-hand part of Fig. 2, traditional motion transfer methods typi-
cally employ a reconstruction training mode for learning and synthesizing motion. Dur-
ing the training phase, they select two arbitrary frames from the driving video as the
source image and driving frame, which are used as input of the MT model. For each
image, the motion keypoints and their local affine transformation are extracted using a
motion estimator, where the motion keypoints can be conceptualized as the centroids of
moving object parts. The dense motion flow from the source image to the driving frame
can therefore be estimated using their motion keypoints and affine transformations. In
the next step, the dense motion flow is used to warp the feature map of the source image,
and produce the synthesized image Îid using the image generator. A perceptual loss is
used as the reconstruction loss after the image generator to ensure that the synthesized
image Îid fully reconstructs the driving frame Iid as in[31]:

Lr =

K∑
l=k

|Fl(Î
i
d)− Fl(I

i
d)| (1)

where Fl(·) is feature map output by the l-th layer of a pre-trained VGG-19 network[33].
Researchers have proposed different method[32] to improve the motion estimator

in order to more precisely extract motion information, yet the motion representation
(i.e., motion keypoints and affine transformations) remains similar. In the interests of
simplicity, we depict only the motion keypoints in Fig. 2, which are related to our MAA
approach. Readers can refer to[31] for further details.
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Cyclic Training Pipeline: In cross-domain motion transfer, the source image and
driving video are obtained from different domains. So it is undesirable to pick a frame
in the driving video as a source image and apply the reconstruction loss after the image
generator, as the model will inevitably be overfitted to the driving video, which will
lead to artifacts in the synthesized image.

To address this issue, we build a cyclic reconstruction framework inspired by the
CycleGAN[42] and cross-identity[19]. As shown in the right-hand side of Fig 2, we
employ two basic basic MT models that share the same parameters. Given a source
image Is and a driving frame Iid, we first obtain a synthesized image Ip using the basic
MT model. Since there is no ground-truth for the synthesized image, the reconstruction
loss cannot be used for Ip.

We then take the synthesized image Ip as a driving frame, along with an arbitrary
frame Ijd as the source image, and these are input again into the basic MT model to
produce another synthesized image Ic. Intuitively, Ic should mimic the motion of Ip,
as well as Iid, since we expect Ip to mimic the motion of Iid. At the same time, Ic
should also preserve the appearance of Ijd , as well as Iid, which is derived from the
same driving video as Ijd . This allows us to employ Iid and the cyclically generated Ic
to create a reconstruction loss for training. More specifically, we employ the perceptual
loss similarly as in Eq. (1):

Lc =

K∑
l=k

|Fl(Ic)− Fl(I
i
d)| (2)

While the cyclic reconstruction loss enables us to train the motion transfer model in
the cross-domain setting, this is only a weak supervision that cannot fully guarantee a
satisfactory result. We therefore further introduce the shape-invariant motion adaptation
module and patch-based appearance model to regularize the motion transfer process,
which will be explained in more detail below.

3.2 Shape-invariant Motion Adaptation

Due to the significant appearance difference between the source image Is and the driv-
ing frame Id, the generated synthesized image Ip often fails to adequately capture the
object motion in the driving frame Id. We therefore propose to directly regularize the
object pose in Ip with that in Id based on the extracted motion keypoints.

However, due to the diversity of the object shapes in Ip and Id, it is undesirable to
directly regularize the consistency of their keypoint positions. We therefore propose to
discover the intrinsic topology of the object, then regularize the included angles between
adjacent object parts of two objects.

Structure Topology Discovery: To discover the intrinsic object topology, for each
driving video, we employ a pre-trained basic MT model to extract the motion keypoints
of all frames in the video. Because the motion keypoints roughly describe the objects’
moving body parts, two keypoints can be considered to be adjacent if their distance
does not change substantially between different frames.

Formally, given a driving frame Id, we denote its motion keypoints as Kd = {ki
d|Ki=1},

where K is the number of motion keypoints. For each pair of keypoints ki
d and kj

d, we
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Fig. 3: Illustration of our shape-invariant motion adaptation module. The top row show
the structure topology, and the bottom two rows represents the motion adaptation stage
using structured and unstructured keypoints

calculate their ℓ2 distance di,j = ℓ2(k
i
d,k

j
d), where i ̸= j. The average distance across

all frames of all driving videos can then be computed as d̄i,j = 1
T

∑T
t=1 d

(t)
i,j , where d(t)i,j

is the distance in the t-th frame, while T is the total number of video frames. Finally,
we calculate the total distance diversity of ki

d and kj
d as follows:

vi,j =

T∑
t=1

|d(t)i,j − d̄i,j | (3)

Intuitively, the distance diversity describes the stability of the connection between
two keypoints. The smaller the distance diversity vi,j , the higher the likelihood that
the two keypoints will be adjacent. We then use the distance diversities to construct a
structure topology graph G, where the nodes are keypoints, and the edges are defined
according to the distance diversities. Specifically, we define the edge value as follows:

ei,j =

{
(vi,j−η)2

η2 , vi,j < η,

0, otherwise
(4)

where η is a threshold, and we filter out the edges with high distance diversities, as
these imply that the two keypoints are unlikely to be adjacent. Note that the edge value
ei,j is within the range of [0, 1]. It can be seen as a measurement of the strength of the
connection between two keypoints. We will demonstrate that it can also be used as a
weight when we regularize the keypoints between driving frame and synthesized image.

Moreover, it is possible that not all keypoints are connected in a single graph; we
select the largest graph as our structure topology graph G. We refer to the keypoints in
G as the structured keypoints and the others as unstructured keypoints. For improved
convenience of presentation, we denote the set of structured keypoints as S and their
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edges as E , the structure topology graph can be presented as G = {S, E}. For un-
structured keypoints, we retain only the keypoints and discard their edges, since their
connectivities are weak, and denote the set of unstructured keypoints as U . We present
an illustration of the structure topology discovery in the top row of Fig. 3.

Regularizing Structured Keypoints: Given a driving frame Id and the synthesized
Ip, we extract their keypoints Kd = {kd} and Kp = {kp} using the basic MT model. To
regularize the keypoints in the driving frame Id and the synthesized Ip, we instantiate
the structure topology G using the extracted keypoints Kd and Kp, respectively. Taking
the driving frame as an example, the instantiated graph is presented as Gd = {Sd, Ed};
here, Sd is the set of structured keypoints in Id, while Ed is the set of corresponding
edges which are calculated based on the Euclidean distances between keypoints. The
instantiated graph of the synthesized image Gp = {Sd, Ed} can be similarly defined.
We illustrate the instantiated graphs in the top of Fig 3.

When examining the structured keypoints, we can observe that considerable differ-
ences exist in terms of object shape; this validates our analysis that it is not preferable
to directly regularize the keypoint positions. However, the pose can be portrayed as the
included angle of each triplet of the connected keypoints in the structure graph.

Specifically, taking the driving frame as an example, let us define a triplet of con-
nected keypoints as td = {ki

d,k
j
d,k

k
d}, where both kj

d and kk
d are connected to ki

d. We
further denote the set of all keypoint triplets in Gd as Td = {tnd |Nn=1}, where N is the
total number of triplets. Similarly, we define the set of triplets for the synthesized image
as Tp = {tnp |Nn=1}.

For each triplet tnd (resp., tnp ), we calculate its included angle and denote it by α(tnd )
(resp., α(tnp )). We then regularize the consistency of the corresponding included angles
for structured keypoints in the driving frame and the synthesized image as follows:

Lrs =
1

N

N∑
n=1

γn|α(tnd )− α(tnp )| (5)

where γn is the weight for the n-th triplet. We calculate γn using the edge values in
the topology graph G. Specifically, given any triplet t = {ki,kj ,kk} in the topology
graph, the weight is computed as γ = ei,jei,k. As the edge represents the strength of
the connections between two keypoints, it is reasonable to employ the multiplication of
the two edges that formed the included angle as the weight for regularization.

Regularizing Unstructured Keypoints: Similarly, given a driving frame Id and the
synthesized Ip, we identify their unstructured keypoints Ud and Up, respectively. Since
these unstructured keypoints are disjoint, we constrain them by encoding their included
angles with the object centroid. Taking the driving frame as an example, for each pair
of keypoints (ki

d,k
j
d) in Ud, we construct a triplet t̂d = (ki

d,k
c
d,k

j
d) in which kc

d is the
object centroid, and further denote the included angle as β(t̂d). We similarly define the
corresponding included angle for the synthesized image as β(t̂p). We then regularize
the consistency of the corresponding included angles for the structured keypoints in the
driving frame and the synthesized image as follows:

Lru =
1

N̂

N̂∑
n=1

|β(t̂nd )− β(t̂np )| (6)
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where N̂ is the number of constructed triplets using structured keypoints in each image.
Combining the loss of structured and unstructured keypoints, the total loss of our

shape-invariant motion adaptation loss can be written as follows:

Lma = Lrs + Lru (7)

𝐼!

𝐼"

D

Fig. 4: Illustration of our structure-guided appearance consistency module

3.3 Structure-Guided Appearance Consistency Module
We now consider how the appearance of the synthesized image Ip might be enforced
to be similar to that of the source image Is. Note that the object poses in Ip and Is are
different, as we have enforced Ip to mimic the pose of the driving frame. We therefore
propose structure-guided appearance consistency module to regularize the appearance
consistency of object parts in Ip and Ic to avoid impacting the learned object pose of Ip

In particular, we use the predicted motion keypoints to extract image patches of
fixed size from both images. After collecting the patches from Ip (resp., Is), a discrim-
inator D is then introduced to enforce the appearance consistency between the corre-
sponding patches by means of an adversarial training strategy, as shown in Fig. 4. The
aim of the discriminator is to determine whether the input patches are from Ip or Is
by minimizing a cross-entropy loss, while the generation model B (i.e., the basic MT
model) aims at generating pseudo-images B(Is), which are difficult to distinguish from
the source image Is by maximizing the cross-entropy loss. Formally, we express the
loss of our patch-based appearance consistency module as follows:

Lac = logD(V (Is)) + log(1−D(V (B(Is)))) (8)

where V (·) represents the patch extraction operation.

3.4 Summary
We combine all losses together to train our proposed MAA model in an end-to-end
manner. The overall objective function can be written as follows,

L = Lr + Lc + λmaLma − λacLac (9)

where λma and λac are tradeoff parameters used to balance the losses. Due to the exis-
tence of the discriminator, we optimize the overall loss in an adversarial training man-
ner, i.e., minB maxD L. Detailed training loop is presented in Supplementary materials.
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4 Experiment

4.1 Datasets

We conduct experiments for two types of object including human body and human face.
For the human body animation, we transfer motion from Mixamo-Video to Fashion-
Video, and for human face animation we transfer motion from Vox-Celeb to CUHK
Face Sketch (Cufs).

Mixamo-Video Dataset is a synthetic human dancing video dataset newly con-
structed by ourselves. We collect 15 characters of 3D human body models and 46 danc-
ing sequences from the mixamo [1] website, then render dancing videos for these char-
acters and dancing sequences, leading to 15× 46 = 690 videos in total with resolution
of 256 × 256. We split ten of the characters as training set and the rest as test set, i.e.
460 and 230 videos, respectively. Details of the dataset are presented in supplementary
materials, and we will release the dataset soon.

Fashion-Video Dataset is a video dataset for showing clothes. It contains 500 train-
ing videos and 100 testing videos with size of 256× 256.Although it is a video dataset,
We use it as an image dataset by selecting one frame per video randomly in training
stage.

Vox-Celeb is a video dataset of human talking. It consists of 12, 331 training videos
and 444 testing videos resized to 256× 256.

CUHK Face Sketch (Cufs) is an image dataset of human face sketches. The dataset
contains 305 images where training set and test set have 250 and 45 images resp.. Each
image is a sketch drawn by an artist based on a photo taken in a frontal pose with a
natural expression. We also resize those images into the size of 256× 256.

Table 1: Quantity results comparison of our method with source only FOMM model
and MRAA model. The lower FID and AED values are the better

Mixamo −→ Fashion Vox −→ Cufs
FID ↓ AED ↓ FID ↓ AED ↓

MRAA 177.3 0.376 127.1 0.764
FOMM 175.9 0.359 112.5 0.693

Ours (MRAA) 72.1 0.289 86.5 0.627
Ours (FOMM) 61.7 0.274 50.1 0.573

4.2 Quantitative Results

Metrics: As the ground-truth video are not available in cross-domain motion transfer,
to quantitatively assess the synthesized videos, we employ two metrics for evaluate
generative models as follows

– Fréchet Inception distance (FID)[15] This score indicates the overall quality of
generated frames, it compares the feature statistics of generated frames and real
images, then calculates the distance between them.
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– Average Euclidean Distance (AED)[31] Considering the generated images share
the same identity with source images, we utilize AED to evaluate the identity sim-
ilarity between them. It also computes the feature distance between two input im-
ages. Specifically, a pre-trained person re-identification network [14] and a pre-
trained facial identification network [2] are used to extract identity feature repre-
sentations for human body and human face dataset, respectively.

Results: As aforementioned, unsupervised motion transfer models like FOMM[31]
or MRAA[32] can be integrated into our MAA framework as the basic motion transfer
model. We conduct experiments by respectively using FOMM and MRAA as our basic
motion transfer model, and take the original FOMM and MRAA as the correspond-
ing baseline for comparison. For both methods, the baseline models are trained on the
driving video dataset without considering the cross-domain issue. Note that the newly
proposed modules in our MAA model are only used in training stage, and the model in
the test stage share the same architecture with the baseline FOMM or MRAA model.

We report the results for Mixamo-Video → Fashion-Video and Vox → Cufs in Tab. 1.
Comparing with the FOMM and MRAA model, our proposed MAA approach achieves
a much better performance. In particular, compared with FOMM, we achieve a FID of
61.7 and an AED of 0.274 for Mixamo-Video → Fashion-Video, and 50.1 vs. 112.5 and
0.573 vs. 0.693 for Vox → Cufs, respectively. Compared with MRAA, we achieve a FID
of 72.1 and an AED of 0.289 for Mixamo-Video → Fashion-Video, and 86.5 vs. 127.1
and 0.627 vs. 0.764 for Vox → Cufs, respectively. Note that, for both FID and AED
metrics, smaller value is better. The large improvement indicates that the cross-domain
motion transfer is challenging for the traditional FOMM and MRAA method, while
our MAA model works well on the cross-domain scenario. We observe that MRAA
performs worse than FOMM in the cross-domain motion transfer task, although the
previous work shows MRAA usually performs better than FOMM in the traditional
single-domain motion transfer[32]. This possibly dues to that the PCA based motion
estimation in the MRAA method is non-parametric and less flexible for cross-domain
motion transfer.

driving
video

source
image

driving
video

source
image

FOMM

Ours (FOMM)

MRA

Ours (MRA)

driving
video

source
image

driving
video

source
image

FOMM

Ours (FOMM)

MRAA

Ours (MRA)

Fig. 5: Visualization results of FOMM,MRAA and ours method on human body datasets
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Fig. 6: Visualization results of FOMM,MRAA and ours method on human face datasets

4.3 Qualitative Results

We visualize the generated results to gain an intuitive assessment of FOMM, MRAA
and our MAA models for cross-domain human body and human face animation in Fig. 5
and Fig. 6, respectively. In each figure, two pairs of results are visualized in the left and
right parts, respectively. Driving frames extracted from the test video are displayed on
the top row, while the source images are showed at the most left column of each part.

For human body animation, as shown in Fig. 5, the results generated by the FOMM
and MRAA model obviously suffer from domain shift problem. Although the motion
of driving video is roughly captured, the human body shape of source image is rarely
preserved, and notable artifacts can be observed in almost all frames of the synthesized
video. In contrast, our MAA model is able to capture the motion of the driving frames
while properly preserving the appearance of the source image.

For human face animation, as shown in Fig. 6, the FOMM and MRAA model could
generate results with a rough motion of driving frames and a similar facial appearance
with source image. However, the quality of synthesized image are not satisfactory where
artifacts are obvious to observe. For example, artifacts on glasses and heads can be
observed for FOMM results as highlighted in the red bounding boxes. These differences
in qualitative results clearly demonstrate the effectiveness of our proposed MAA model
for cross-domain motion transfer.

4.4 Ablation Study

To study the impact of our proposed modules, we further conduct ablation study on both
human body and human face datasets. The FOMM is used as the basic motion transfer
model. The quantitative results are shown in Tab. 2, where ’w/o CYC’, ’w/o SIMA’
and ’w/o SGAC’ means removing the cyclic training pipeline, shape-invariant motion
adaptation and structure-guided appearance consistency of FOMM model, respectively.

For both human body and human face animation, as shown in Tab. 2, we observe
considerable performance drops on both AED and FID for w/o CYC, which again con-
firms the importance to explicitly consider the cross-domain issue when performing
motion transfer across domains. Similar observations can be obtained on human face
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Table 2: Ablation results comparison of FOMM and our ablated models.
Mixamo −→ Fashion Vox −→ Cufs
FID ↓ AED ↓ FID ↓ AED ↓

FOMM 175.9 0.359 112.5 0.693
w/o CYC 136.9 0.354 74.1 0.633
w/o SIMA 80.2 0.303 60.7 0.622
w/o SGAC 67.7 0.284 55.2 0.603

Ours (FOMM) 61.7 0.274 50.1 0.573

dataset, which is also confirmed in the qualitative results in Fig. 7. Other ablation set-
tings w/o SIMA and w/o SGAC also degrade the performance considerably, which val-
idates the necessity of using the two modules for generating satisfactory synthesized
video in cross-domain motion transfer.

To show the effect of each module intuitively, we further visualize the synthesized
results in Fig. 7. We observe that the result of w/o CYC has richer details than that of
FOMM model. For example, the face and the clothes are clearer. However, compared
with our final MAA result, it still drops important motion and appearance information.
Moreover, we observe the result of w/o SIMA are able to preserve relative rich ap-
pearance information, however, the pose of driving frames are not transferred properly
without the help of motion consistency module. For example, artifacts can be observed
for the poses of the arms and heads as highlighted in the blue rectangles. And, on the
third row, w/o SGAC performs well in pose transferring but fails to preserve source im-
age appearance without SGAC, especially for the details of human face as highlighted
in red rectangles. These observations confirm the effectiveness of the modules proposed
in our MAA approach.

FOMM

w/o CYC

w/o SIMA

w/o SGAC

ours 

driving
video

source
image

Fig. 7: Visualized ablation study results on the human body datasets
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4.5 User Study

To further evaluate our model, we additionally conduct a user study. In particular, we
randomly select 50 pairs of source domain driving videos and target domain source
images for both human body animation and human face animation, and generate result
videos in an ablation setting. For each dataset, we compare results of our final MAA
model with those of FOMM and three ablation methods, respectively. The comparison
are evaluated by 25 users according to three aspects, motion, appearance (denoted as
app. in Tab. 3) and overall, respectively.

The user preferences are shown in Tab. 3. We observe that all scores are above
0.5, which means our results are preferred by the majority of users for all aspects in
all settings. For motion aspect, fewer users prefer w/o SIMA than other settings when
compared with MAA model on both datasets (0.748 vs. 0.717 and 0.679 for human
body, and 0.571 vs. 0.704 for human face), which indicates SIMA improves the motion
of generated results. For appearance aspect, fewer user prefer w/o SGAC than other
ablation settings when compared with MAA model in human body dataset (0.715 vs.
0.711 and 0.699), which indicates SGAC contributes to appearance of generated results.

Table 3: User study results. We compare the Ours (FOMM) model to every ablation
model, and the values represent the user preferences to Ours (FOMM) model

Mixamo −→ Fashion Vox −→ Cufs
motion appearance overall motion appearance overall

FOMM 0.888 0.983 0.978 0.845 0.792 0.875
w/o CYC 0.717 0.699 0.732 0.571 0.615 0.626
w/o SIMA 0.748 0.711 0.702 0.704 0.655 0.675
w/o SGAC 0.679 0.715 0.725 0.593 0.617 0.575

5 Conclusion

In this paper, we propose a Motion and Appearance Adaptation (MAA) approach for
cross-domain motion transfer. In MAA, we design a shape-invariant motion adaptation
module to enforce the consistency of the angles of object parts in two images to cap-
ture the motion information. Meanwhile, we introduce a structure-guided appearance
consistency module to regularize the similarity between the patches of the synthesized
image and the source image. The experimental results demonstrates the effectiveness of
our proposed method.
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