Abstract
Recently, there has been growing attention on an end-to-end deep learning-based stitching model. However, the most challenging point in deep learning-based stitching is to obtain pairs of input images with a narrow field of view and ground truth images with a wide field of view captured from real-world scenes. To overcome this difficulty, we develop a weakly-supervised learning mechanism to train the stitching model without requiring genuine ground truth images. In addition, we propose a stitching model that takes multiple real-world fisheye images as inputs and creates a 360\(^{\circ }\) output image in an equirectangular projection format. In particular, our model consists of color consistency corrections, warping, and blending, and is trained by perceptual and SSIM losses. The effectiveness of the proposed algorithm is verified on two real-world stitching datasets.
Project page is at https://eadcat.github.io/WSSN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kandao. https://www.kandaovr.com/. Accessed 05 Mar 2022
Dualfisheye (2016). https://github.com/ooterness/DualFisheye
Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Intl. J. Comput. Vis. (IJCV) 74(1), 59–73 (2007). https://doi.org/10.1007/s11263-006-0002-3
Cai, D., He, X., Han, J.: Isometric projection. In: Association for the Advancement of Artificial Intelligence (AAAI), pp. 528–533. AAAI Press (2007)
Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). In: International Conference on Learning Representation (ICLR) (2016)
Coates, A., et al.: The PanCam instrument for the ExoMars rover. Astrobiology 17(6–7), 511–541 (2017)
Dai, Q., Fang, F., Li, J., Zhang, G., Zhou, A.: Edge-guided composition network for image stitching. Pattern Recogn. (PR) 118, 108019 (2021)
DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. CoRR abs/1606.03798 (2016)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of Conference on Robot Learning (CoRL), pp. 1–16 (2017)
Doutre, C., Nasiopoulos, P.: Fast vignetting correction and color matching for panoramic image stitching. In: IEEE International Conference on Image Processing (ICIP), pp. 709–712 (2009)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Flores, A., Belongie, S.: Removing pedestrians from Google street view images. In: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 53–58. IEEE (2010)
Gao, J., Kim, S.J., Brown, M.S.: Constructing image panoramas using dual-homography warping. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 49–56. IEEE (2011)
Gao, J., Li, Y., Chin, T.J., Brown, M.S.: Seam-driven image stitching. In: Eurographics, pp. 45–48 (2013)
Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1780–1789 (2020)
He, B., Yu, S.: Parallax-robust surveillance video stitching. Sensors 16(1), 7 (2016)
He, K., Chang, H., Sun, J.: Rectangling panoramic images via warping. ACM Trans. Graph. (ToG) 32(4), 1–10 (2013)
Herrmann, C., Wang, C., Bowen, R.S., Keyder, E., Zabih, R.: Object-centered image stitching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 846–861. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_50
Herrmann, C., et al.: Robust image stitching with multiple registrations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 53–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_4
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of Neural Information Processing Systems (NeurIPS), pp. 6626–6637 (2017)
Jia, Q., et al.: Leveraging line-point consistence to preserve structures for wide parallax image stitching. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 12186–12195 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representation (ICLR) (2014)
Lai, W.S., Gallo, O., Gu, J., Sun, D., Yang, M.H., Kautz, J.: Video stitching for linear camera arrays. In: British Machine Vision Conference (BMVC), pp. 1–12 (2019)
Le, H., Liu, F., Zhang, S., Agarwala, A.: Deep homography estimation for dynamic scenes. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 7652–7661 (2020)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690 (2017)
Lee, K.Y., Sim, J.Y.: Warping residual based image stitching for large parallax. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 8198–8206 (2020)
Li, J., Yu, K., Zhao, Y., Zhang, Y., Xu, L.: Cross-reference stitching quality assessment for 360 omnidirectional images. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2360–2368 (2019)
Li, J., Zhao, Y., Ye, W., Yu, K., Ge, S.: Attentive deep stitching and quality assessment for 360\(^{\circ }\) omnidirectional images. IEEE J. Sel. Top. Sig. Process. 14(1), 209–221 (2019)
Li, N., Liao, T., Wang, C.: Perception-based seam cutting for image stitching. Sig. Image Video Process. 12, 967–974 (2018). https://doi.org/10.1007/s11760-018-1241-9
Liao, T., Li, N.: Single-perspective warps in natural image stitching. IEEE Trans. Image Process. (TIP) 29, 724–735 (2019)
Lin, K., Jiang, N., Cheong, L.-F., Do, M., Lu, J.: SEAGULL: seam-guided local alignment for parallax-tolerant image stitching. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 370–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_23
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lin, W.Y., Liu, S., Matsushita, Y., Ng, T.T., Cheong, L.F.: Smoothly varying affine stitching. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 345–352. IEEE (2011)
Ling, S., Cheung, G., Le Callet, P.: No-reference quality assessment for stitched panoramic images using convolutional sparse coding and compound feature selection. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2018). https://doi.org/10.1109/ICME.2018.8486545
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Intl. J. Comput. Vis. (IJCV) 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Madhusudana, P.C., Soundararajan, R.: Subjective and objective quality assessment of stitched images for virtual reality. IEEE Trans. Image Process. (TIP) 28(11), 5620–5635 (2019)
Maneshgar, B., Sujir, L., Mudur, S., Poullis, C.: A long-range vision system for projection mapping of stereoscopic content in outdoor areas. In: VISIGRAPP (1: GRAPP), pp. 290–297, January 2017. https://doi.org/10.5220/0006258902900297
Nguyen, T., Chen, S.W., Shivakumar, S.S., Taylor, C.J., Kumar, V.: Unsupervised deep homography: a fast and robust homography estimation model. IEEE Robot. Autom. Lett. (RAL) 3(3), 2346–2353 (2018)
Nie, L., Lin, C., Liao, K., Liu, M., Zhao, Y.: A view-free image stitching network based on global homography. J. Vis. Commun. Image Represent. 73, 102950 (2020)
Nie, L., Lin, C., Liao, K., Liu, S., Zhao, Y.: Unsupervised deep image stitching: reconstructing stitched features to images. IEEE Trans. Image Process. (TIP) 30, 6184–6197 (2021)
Ozawa, T., Kitani, K.M., Koike, H.: Human-centric panoramic imaging stitching. In: Proceedings of the 3rd Augmented Human International Conference, pp. 1–6 (2012)
Patil, T., Turkowski, K.: Calibrating stitched videos with VRWorks 360 video SDK (2018). https://developer.nvidia.com/blog/calibrating-videos-vrworks-360-video/
Perazzi, F., et al.: Panoramic video from unstructured camera arrays. In: Computer Graphics Forum, vol. 34, pp. 57–68. Wiley Online Library (2015)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 4938–4947 (2020)
Shen, C., Ji, X., Miao, C.: Real-time image stitching with convolutional neural networks. In: 2019 IEEE International Conference on Real-Time Computing and Robotics (RCAR), pp. 192–197. IEEE (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representation (ICLR) (2015)
Song, D.Y., Um, G.M., Lee, H.K., Cho, D.: End-to-end image stitching network via multi-homography estimation. IEEE Sig. Process. Lett. (SPL) 28, 763–767 (2021)
Wang, C., Wang, X., Bai, X., Liu, Y., Zhou, J.: Self-supervised deep homography estimation with invertibility constraints. Pattern Recogn. Lett. (PRL) 128, 355–360 (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. (TIP) 13(4), 600–612 (2004)
Xia, M., Yao, J., Xie, R., Zhang, M., Xiao, J.: Color consistency correction based on remapping optimization for image stitching. In: Proceedings of the International Conference on Computer Vision Workshops (ICCVW), pp. 2977–2984 (2017)
Xiang, T.Z., Xia, G.S., Bai, X., Zhang, L.: Image stitching by line-guided local warping with global similarity constraint. Pattern Recogn. (PR) 83, 481–497 (2018)
Xu, B., Jia, Y.: Wide-angle image stitching using multi-homography warping. In: IEEE International Conference on Image Processing (ICIP), pp. 1467–1471 (2017)
Ye, W., Yu, K., Yu, Y., Li, J.: Logical stitching: a panoramic image stitching method based on color calibration box. In: 2018 14th IEEE International Conference on Signal Processing (ICSP), pp. 1139–1143 (2018). https://doi.org/10.1109/ICSP.2018.8652363
Zaragoza, J., Chin, T.J., Brown, M.S., Suter, D.: As-projective-as-possible image stitching with moving DLT. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 2339–2346 (2013)
Zhang, F., Liu, F.: Parallax-tolerant image stitching. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 3262–3269 (2014)
Zhang, J., et al.: Content-aware unsupervised deep homography estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 653–669. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_38
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 586–595 (2018)
Acknowledgement
This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. 2018-0-00207, Immersive Media Research Laboratory) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2021R1A4A1032580, No.2022R1C1C1009334).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, DY., Lee, G., Lee, H., Um, GM., Cho, D. (2022). Weakly-Supervised Stitching Network for Real-World Panoramic Image Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-19787-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19786-4
Online ISBN: 978-3-031-19787-1
eBook Packages: Computer ScienceComputer Science (R0)