Skip to main content

DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13676))

Included in the following conference series:

Abstract

One key challenge of exemplar-guided image generation lies in establishing fine-grained correspondences between input and guided images. Prior approaches, despite the promising results, have relied on either estimating dense attention to compute per-point matching, which is limited to only coarse scales due to the quadratic memory cost, or fixing the number of correspondences to achieve linear complexity, which lacks flexibility. In this paper, we propose a dynamic sparse attention based Transformer model, termed Dynamic Sparse Transformer (DynaST), to achieve fine-level matching with favorable efficiency. The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on. Specifically, DynaST leverages the multi-layer nature of Transformer structure, and performs the dynamic attention scheme in a cascaded manner to refine matching results and synthesize visually-pleasing outputs. In addition, we introduce a unified training objective for DynaST, making it a versatile reference-based image translation framework for both supervised and unsupervised scenarios. Extensive experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details, outperforming the state of the art while reducing the computational cost significantly. Our code is available here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlBahar, B., Huang, J.B.: Guided image-to-image translation with bi-directional feature transformation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9016–9025 (2019)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)

  4. Child, R., Gray, S., Radford, A., Sutskever, I.: Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509 (2019)

  5. Choromanski, K., et al.: Rethinking attention with performers (2021)

    Google Scholar 

  6. Dai, Z., Yang, Z., Yang, Y., Carbonell, J.G., Le, Q., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988 (2019)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Deng, Y., Tang, F., Dong, W., Huang, H., Ma, C., Xu, C.: Arbitrary video style transfer via multi-channel correlation. arXiv preprint arXiv:2009.08003 (2020)

  9. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  11. Gao, C., Liu, Q., Xu, Q., Wang, L., Liu, J., Zou, C.: SketchyCOCO: image generation from freehand scene sketches. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5174–5183 (2020)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  14. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  15. Huo, J., et al.: Manifold alignment for semantically aligned style transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14861–14869 (2021)

    Google Scholar 

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  17. Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6207–6217 (2021)

    Google Scholar 

  18. Jiang, Y., Chan, K.C., Wang, X., Loy, C.C., Liu, Z.: Robust reference-based super-resolution via C2-matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2103–2112 (2021)

    Google Scholar 

  19. Jin, Y., et al.: Image matching across wide baselines: from paper to practice. Int. J. Comput. Vis. 129(2), 517–547 (2021). https://doi.org/10.1007/s11263-020-01385-0

    Article  Google Scholar 

  20. Jing, Y., et al.: Dynamic instance normalization for arbitrary style transfer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4369–4376 (2020)

    Google Scholar 

  21. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  22. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. arXiv preprint arXiv:2001.04451 (2020)

  23. Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10285–10295 (2019)

    Google Scholar 

  24. Lee, J., Kim, E., Lee, Y., Kim, D., Chang, J., Choo, J.: Reference-based sketch image colorization using augmented-self reference and dense semantic correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5801–5810 (2020)

    Google Scholar 

  25. Li, B., Zhao, F., Su, Z., Liang, X., Lai, Y.K., Rosin, P.L.: Example-based image colorization using locality consistent sparse representation. IEEE Trans. Image Process. 26(11), 5188–5202 (2017)

    Article  MathSciNet  Google Scholar 

  26. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Advances in Neural Information Processing Systems, vol. 32, pp. 5243–5253 (2019)

    Google Scholar 

  27. Li, X., Han, K., Li, S., Prisacariu, V.: Dual-resolution correspondence networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 17346–17357 (2020)

    Google Scholar 

  28. Li, X., Liu, S., Kautz, J., Yang, M.H.: Learning linear transformations for fast image and video style transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3809–3817 (2019)

    Google Scholar 

  29. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  30. Liu, S., et al.: AdaAttN: revisit attention mechanism in arbitrary neural style transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6649–6658 (2021)

    Google Scholar 

  31. Liu, X., et al.: Extremely dense point correspondences using a learned feature descriptor. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4847–4856 (2020)

    Google Scholar 

  32. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1096–1104 (2016)

    Google Scholar 

  33. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  34. Lu, L., Li, W., Tao, X., Lu, J., Jia, J.: MASA-SR: matching acceleration and spatial adaptation for reference-based image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6368–6377 (2021)

    Google Scholar 

  35. Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T., Van Gool, L.: Exemplar guided unsupervised image-to-image translation with semantic consistency. arXiv preprint arXiv:1805.11145 (2018)

  36. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 405–415 (2017)

    Google Scholar 

  37. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  38. Phillips, F., Mackintosh, B.: Wiki Art Gallery Inc.: a case for critical thinking. Issues Account. Educ. 26(3), 593–608 (2011)

    Article  Google Scholar 

  39. Ren, S., Zhou, D., He, S., Feng, J., Wang, X.: Shunted self-attention via multi-scale token aggregation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  40. Ren, Y., Fan, X., Li, G., Liu, S., Li, T.H.: Neural texture extraction and distribution for controllable person image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13535–13544 (2022)

    Google Scholar 

  41. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  42. Song, L., Lu, Z., He, R., Sun, Z., Tan, T.: Geometry guided adversarial facial expression synthesis. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 627–635 (2018)

    Google Scholar 

  43. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)

    Google Scholar 

  44. Tan, Z., et al.: Efficient semantic image synthesis via class-adaptive normalization. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 4852–4866 (2022)

    Google Scholar 

  45. Tang, H., Bai, S., Torr, P., Sebe, N.: Bipartite graph reasoning GANs for person image generation (2020)

    Google Scholar 

  46. Tang, H., Bai, S., Zhang, L., Torr, P.H.S., Sebe, N.: XingGAN for person image generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 717–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_43

    Chapter  Google Scholar 

  47. Tang, H., Xu, D., Liu, G., Wang, W., Sebe, N., Yan, Y.: Cycle in cycle generative adversarial networks for keypoint-guided image generation. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2052–2060 (2019)

    Google Scholar 

  48. Tang, H., Xu, D., Yan, Y., Torr, P.H., Sebe, N.: Local class-specific and global image-level generative adversarial networks for semantic-guided scene generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7870–7879 (2020)

    Google Scholar 

  49. Truong, P., Danelljan, M., Timofte, R.: GLU-Net: global-local universal network for dense flow and correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6258–6268 (2020)

    Google Scholar 

  50. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  51. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  52. Wang, M., et al.: Example-guided style-consistent image synthesis from semantic labeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1495–1504 (2019)

    Google Scholar 

  53. Wang, P., et al.: KVT: k-NN attention for boosting vision transformers. arXiv preprint arXiv:2106.00515 (2021)

  54. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  55. Wang, Y., Qi, L., Chen, Y.C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13749–13758 (2021)

    Google Scholar 

  56. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800 (2020)

    Google Scholar 

  57. Yang, Y., Feng, Z., Song, M., Wang, X.: Factorizable graph convolutional networks. In: Conference on Neural Information Processing Systems (2020)

    Google Scholar 

  58. Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling knowledge from graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  59. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9036–9045 (2019)

    Google Scholar 

  60. Yu, W., et al.: MetaFormer is actually what you need for vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  61. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9459–9468 (2019)

    Google Scholar 

  62. Zhan, F., et al.: Unbalanced feature transport for exemplar-based image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15028–15038 (2021)

    Google Scholar 

  63. Zhan, F., et al.: Bi-level feature alignment for versatile image translation and manipulation. arXiv preprint arXiv:2107.03021 (2021)

  64. Zhang, P., Zhang, B., Chen, D., Yuan, L., Wen, F.: Cross-domain correspondence learning for exemplar-based image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5143–5153 (2020)

    Google Scholar 

  65. Zhang, Y., et al.: Multimodal style transfer via graph cuts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5943–5951 (2019)

    Google Scholar 

  66. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7982–7991 (2019)

    Google Scholar 

  67. Zheng, H., Liao, H., Chen, L., Xiong, W., Chen, T., Luo, J.: Example-guided image synthesis using masked spatial-channel attention and self-supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 422–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_25

    Chapter  Google Scholar 

  68. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: Proceedings of AAAI (2021)

    Google Scholar 

  69. Zhou, X., et al.: CoCosNet v2: full-resolution correspondence learning for image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11465–11475 (2021)

    Google Scholar 

  70. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5104–5113 (2020)

    Google Scholar 

  71. Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention transfer for person image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2347–2356 (2019)

    Google Scholar 

Download references

Acknowledgement

This project is supported by AI Singapore (Award No.: AISG2-RP-2021-023) and NUS Faculty Research Committee Grant (WBS: A-0009440-00-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchao Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18228 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Ye, J., Ren, S., Wang, X. (2022). DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19787-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19786-4

  • Online ISBN: 978-3-031-19787-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics