
A Codec Information Assisted Framework for
Efficient Compressed Video Super-Resolution

Hengsheng Zhang1, Xueyi Zou2, Jiaming Guo2, Youliang Yan2, Rong Xie1, and

Li Song1,3�

1 Institute of Image Communication and Network Engineering, Shanghai Jiao Tong
University

2 Huawei Noah’s Ark Lab
3 MoE Key Lab of Artifical Intelligence, AI Institute, Shanghai Jiao Tong University

{hs zhang,xierong,song li}@sjtu.edu.cn
{zouxueyi,guojiaming5,yanyouliang}@huawei.com

Abstract. Online processing of compressed videos to increase their res-
olutions attracts increasing and broad attention. Video Super-Resolution
(VSR) using recurrent neural network architecture is a promising solu-
tion due to its efficient modeling of long-range temporal dependencies.
However, state-of-the-art recurrent VSR models still require significant
computation to obtain a good performance, mainly because of the com-
plicated motion estimation for frame/feature alignment and the redun-
dant processing of consecutive video frames. In this paper, considering
the characteristics of compressed videos, we propose a Codec Informa-
tion Assisted Framework (CIAF) to boost and accelerate recurrent VSR
models for compressed videos. Firstly, the framework reuses the coded
video information of Motion Vectors to model the temporal relationships
between adjacent frames. Experiments demonstrate that the models with
Motion Vector based alignment can significantly boost the performance
with negligible additional computation, even comparable to those using
more complex optical flow based alignment. Secondly, by further mak-
ing use of the coded video information of Residuals, the framework can
be informed to skip the computation on redundant pixels. Experiments
demonstrate that the proposed framework can save up to 70% of the com-
putation without performance drop on the REDS4 test videos encoded
by H.264 when CRF is 23.

Keywords: Efficient video super-resolution, Compressed video, Codec
information assisted, Motion Vectors, Residuals

1 Introduction

Compressed videos are prevalent on the Internet, ranging from movies, webcasts
to user-generated videos, most of which are of relatively low resolutions and
qualities. Many terminal devices, such as smartphones, tablets, and TVs, come
with a 2K/4K or even 8K definition screen. Thus, there is an urgent demand for
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such devices to be able to online super-resolve the low-resolution videos to the
resolution of the screen definition. Video Super-Resolution (VSR) increases the
video frames’ resolution by exploiting redundant and complementary informa-
tion along the video temporal dimension. With the wide use of neural networks
in computer vision tasks, on the one hand, neural network based VSR methods
outperform traditional ones. But on the other hand, they require a lot of com-
putation and memory, which current commercial terminal devices cannot easily
provide.

Most neural network based VSR models come with a lot of repeated computa-
tion or memory consumption. For example, sliding-window based VSRmodels[10,25,27,5]
have to extract the features of adjacent frames repeatedly. Although this process
can be optimized by preserving the feature maps of previous frames, it increases
memory consumption. Besides, to make the most of adjacent frames’ informa-
tion, frame alignment is an essential part of many such models, which is usu-
ally implemented by optical flow prediction[21,24], deformable convolution[6,34],
attention/correlation[16], and other complicated modules[13,32]. This frame align-
ment process also increases model complexity, and many of the operators are not
well supported by current terminal chipsets.

Many VSR methods use recurrent neural networks to avoid repeated feature
extraction and to exploit long-range dependencies. The previous frame’s high-
resolution information (image or features) is reused for the current frame predic-
tion. Several information propagation schemes have been proposed, such as uni-
directional propagation[23,8,11], bidirectional propagation[2,17], and the more
complex grid propagation[3,31]. As expected, the more complex the propagation
scheme is, the better the super-resolution performs in terms of PSNR/SSIM or
visual quality. However, considering the stringent computational budget of ter-
minal devices and the online processing requirement, most complex propagation
schemes, such as bidirectional propagation and grid propagation, are not good
choices. Unidirectional recurrent models seem to be good candidates, but to get
better performance, frame/feature alignment is also indispensable. As mentioned
above, mainstream methods for alignment are computationally heavy and not
well supported by current terminal chipsets.

Compared with raw videos, compressed videos have some different charac-
teristics. When encoding, the motion relationships of the current frame and a
reference frame (e.g. the previous frame) are calculated as Motion Vectors
(MVs). The reference frame is then warped according to MVs to get the pre-
dicted image of the current time step. The differences between the predicted
image and current frame are calculated as Residuals. MVs and Residuals are
encoded in the video streams, with MVs providing motion cues of video frames
and Residuals indicating the motion-compensated differences between frames.
When decoding, MVs and Residuals are extracted to rebuild the video frames
sequentially based on the previous rebuilt frames.

By leveraging the characteristics of compressed videos, we propose a Codec
Information Assisted Framework (CIAF) to improve the performance and the
efficiency of unidirectional recurrent VSR methods. To align the features of pre-
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vious frame, we reuse the MVs to model the temporal relationships between
adjacent frames. The models using MV-based alignment can significantly boost
the performance with negligible additional computation, even reaching a compa-
rable performance with those using more complex optical flow based alignment.
To further reduce terminal device computation burden, we apply most compu-
tation (convolutions) only to changed regions of consecutive frames. For the rest
areas, we reuse features of the previous frame by warping part of the feature
maps generated in the last step according to MVs. The way to determine where
the change happens is based on Residuals, i.e., only pixels with Residuals not
equal to zero are considered to be changed. Due to the high degree of similarity
between video frames, the proposed approach can skip lots of computation. The
experiments show up to 70% of computation can be saved without performance
drop on the REDS4 [27] test videos encoded by H.264 when CRF is 23.

The contributions of this paper can be summarized as follows. (1) We propose
to reuse the coded video information of MVs to model temporal relationships
between adjacent frames for frame/feature alignment. Models with MV-based
alignment can significantly boost performance with minimal additional compu-
tation, even matching the performance of optical flow based models. (2) We find
that the coded information of Residuals can inform the VSR models to skip the
computation on redundant pixels. The models using Residual-informed sparse
processing can save lots of computation without a performance drop. (3) We
disclose some of the crucial tricks to train the CIAF, and we evaluate some of
the essential design considerations contributing to the efficient compressed VSR
model.

2 Related Work

In this section, we first review the CNN-based video super-resolution work. Then,
we discuss adaptive CNN acceleration techniques related to our work.

2.1 Video Super-Resolution

Video super-resolution (VSR) is challenging because complementary information
must be aggregated across misaligned video frames for restoration. There are
mainly two forms of VSR algorithms: sliding-window methods and recurrent
methods.
Sliding-window methods. Sliding-window methods restore the target high-
resolution frame from the current and its neighboring frames. [1,30] align the
neighboring frames to the target frame with predicted optical flows between
input frames. Instead of explicitly aligning frames, RBPN[10] treats each con-
text frame as a separate source of information and employs back-projection
for iterative refining of target HR features. DUF[13] utilizes generated dynamic
upsampling filters to handle motions implicitly. Besides, deformable convolu-
tions (DCNs)[6,34] are introduced to express temporal relationships. TDAN[25]
aligns neighboring frames with DCNs in the feature space. EDVR[27] uses DCNs
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on a multi-scale basis for more precise alignment. MuCAN[16] searches similar
patches around the target position from neighboring frames instead of direct
motion estimation. [5] extracts Motion Vectors from compressed video streams
as motion priors for alignment and incorporates coding priors into modified SFT
blocks[28] to refine the features from the input LR frames. These methods can
produce pleasing results, but they are challenging to be applied in practice on
the terminal devices due to repeated feature extraction or complicated motion
estimation.
Recurrent methods. Unlike sliding-window methods, recurrent methods take
the output of the past frame processing as a prior input for the current itera-
tion. So the recurrent networks are not only efficient but also can take account
of long-range dependencies. In unidirectional recurrent methods FRVSR[23],
RLSP[8] and RSDN[11], information is sequentially propagated from the first
frame to the last frame, so this kind of scheme has the potential to be ap-
plied for online processing. Besides, FRVSR[23] aligns the past predicted HR
frame with optical flows for the current iteration. RLSP[8] and RSDN[11] em-
ploys high-dimensional latent states to implicitly transfer temporal information
between frames. Different from unidirectional recurrent networks, BasicVSR[2]
proposes a bidirectional propagation scheme to better exploit temporal features.
BasicVSR++[3] redesigns BasicVSR by proposing second-order grid propagation
and flow-guided deformable alignment. Similar with BasicVSR++, [31] employs
complex grid propagation to boost the performance. COMISR[17] applies a bidi-
rectional recurrent model to compressed video super-resolution and uses a CNN
to predict optical flows for alignment. Although they can achieve state-of-the-
art performance, the complicated information propagation scheme and complex
motion estimation make them unpractical to apply to the terminal device with
online processing.

2.2 Adaptive Inference

Most of the existing CNN methods treat all regions in the image equally. But
the flat area is naturally easier to process than regions with textures. Adaptive
inference can adapt the network structure according to the characteristics of the
input. BlockDrop[29] proposes to dynamically pick which deep network layers
to run during inference to decrease overall computation without compromising
prediction accuracy. ClassSR[14] uses a “class module” to decompose the im-
age into sub-images with different reconstruction difficulties and then applies
networks with various complexity to process them separately. Liu et al. [19] es-
tablishes adaptive inference for SR by adjusting the number of convolutional
layers used at various locations. Wang et al. [26] locate redundant computation
by predicted spatial and channel masks and use sparse convolution to skip redun-
dant computation. The image-based acceleration algorithms follow the internal
characteristics of images, so they can only reduce spatial redundancy.

Most of the time, the changes between consecutive frames in a video are
insignificant. Based on this observation, Skip-Convolutions[9] limits the compu-
tation only to the regions with significant changes between frames while skipping
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Fig. 1: Overview of the proposed codec information assisted framework (CIAF).
The ht−1 is the refined features from past frame LRt−1. Motion Vector
(MVt→t−1) and Residuals (Rest) are the codec information. In our model, we
utilize the Motion Vector to align the features from the past frame. Besides, the
sparse processing is applied in the Resblocks only to calculate the regions with
Residuals.

the others. But this model is primarily applicable to high-level tasks. FAST[33],
the most similar work with ours, employs SRCNN[7] to only generate the HR
image of the first frame in a group of frames. In the following iterations, the HR
blocks of the last frame are transferred to the current frame according to MVs.
Finally, the up-sampled Residuals are added to the transferred HR image to gen-
erate the HR output of the current frame. The operations are on the pixel level,
which can easily lead to errors. Instead of directly reusing the HR pixels from
past frames, we utilize MVs to conduct an efficient alignment for unidirectional
recurrent VSR systems. And the Residuals are used to determine the locations
of redundancy.

3 Codec Information Assisted Framework

In this section, we first introduce the basics of video coding related to our frame-
work. Then we present our codec information assisted framework (CIAF, Fig.
1) consisting of two major parts, i.e., the Motion Vector (MV) based alignment
and Residual informed sparse processing.

3.1 Video coding Basics

The Inter-Prediction Mode (Fig. 2) of video codec inspires our framework. Gen-
erally, there is a motion relationship between the objects in each frame and
its adjacent frames. The motion relationship of this kind of object constitutes
the temporal redundancy between frames. In H.264[22], temporal redundancy
is reduced by motion estimation and motion compensation. As Fig. 2 shows,
in motion estimation, for every current block, we can find a similar pixel block
as a reference in the reference frame. The relative position between the current



6 Hengsheng Zhang et al.

pixel block in the current frame and the reference block in the reference frame is
represented by (MVx,MVy), a vector of two coordinate values used to indicate
this relative position, known as the Motion Vector (MV). In motion com-
pensation, we use the found reference block as a prediction of the current block.
Because there are slight differences between the current and reference blocks,
the encoder needs to calculate the differences as Residual. When decoding, we
first use the decoded reference frame and MVs to generate the prediction image
of the target frame. Then we add decoded Residuals to the prediction image to
get the target frame. In our paper, we reuse the MVs and Residuals to increase
the efficiency of unidirectional recurrent VSR models.

Fig. 2: The Inter-Prediction Mode of video codec.

3.2 Motion Vector based Alignment

In VSR methods, alignment between neighboring frames is important for good
performance. In this paper, for alignment, we warp the HR information of the
past frame with MVs. Different from the interpolation filter used in H.264, the
bilinear interpolation filter is applied to the pixels for efficiency if the MV is
fractional. When there is an insufficient temporal connection between blocks,
the video encoder utilizes intra-prediction. Since the intra-blocks mainly ap-
pear in the keyframe (the first frame of a video clip) and there are few intra-
predicted blocks in most frames, for blocks with intra-prediction, we transfer
the features of the same position in the adjacent frame. To a common format,
we set MV = (0, 0) for intra-blocks. We can formulate a motion field MV with
size H ×W × 2 like optical flow. H and W are the height and width of the in-
put LR frame, respectively. The third dimension indicates the relative position
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in the width and height directions. So the MV is an approximate alternative
to optical flow. In this way, we bypass the complicated motion estimation. The
MV-based alignment can boost the performance of existing unidirectional recur-
rent VSR models and even achieve comparable performance with optical flow
based alignment, as demonstrated later.

3.3 Residual Informed Sparse Processing

As Fig. 1 shows, in the paper, we design a Residual informed sparse processing to
reduce redundant computation. Residuals represent the difference between the
warped frame and the current frame. The areas without Residuals indicate the
current region can be directly predicted by sharing the corresponding patches
from the reference frame. Therefore, Residuals can locate the areas that need to
be further refined. With the guide of Residuals, we only make convolutions on the
“important” pixels. The features of the rest pixels are enhanced by aggregation
with the MV-warped features from the past frame. As Fig. 1 shows, to make it
robust, we adopt this sparse processing to the body (Resblocks) of the network,
the head and tail Conv layers are applied on all pixels.

Benifict from motion estimation and motion compensation, we can easily
predict the flat regions or regular structures like brick wall for current frame
according to the contents of adjacent frames without loss (Residuals). Residuals
are more likely to be introduced on complex textures. Because flat regions or
regular structures take up the majority of the frame, Residuals are sparse in most
scenes. Based on these characteristics, the proposed Residual informed sparse
processing can significantly reduce the space-time redundancy computation while
maintaining the comparable performance with baseline.

Fig. 3: The sparse mask generation. Rest is the Residual extracted from com-
pressed video. When training, we use a tiny CNN to predict a spatial mask; when
testing, convolutions are only applied to pixels whose Residual is not equal to 0.



8 Hengsheng Zhang et al.

Because the Residuals are sparse, only a tiny part of pixels optimize the model
if we directly utilize Residuals to decide where to conduct convolutions during
training. In experiments, we find it hard to converge. We design a Simulated
Annealing strategy to slowly reduce the number of pixels involved in training,
which is a critical trick in our sparse processing. As Fig. 3 shows, we utilize a
light CNN model to identify the changed regions according to the current frame
and the MV-warped past frame. Following [26], Gumbel softmax trick[12] is used
to produce a spatial mask M ∈ RH×W with the output features F ∈ R2×H×W .

M [x, y] =
exp((F [1, x, y] +G[1, x, y])/τ)∑2
i=1 exp((F [i, x, y] +G[i, x, y])/τ)

(1)

where x and y are vertical and horizontal indices, G ∈ R2×H×W is a Gum-
bel noise vector with all elements following Gumbel(0, 1) distribution and τ is
the temperature parameter. Samples from Gumbel softmax distribution become
uniform if τ → ∞. When τ → 0, samples from Gumbel softmax distribution
become one-hot. The predicted mask gradually becomes sparse with training.
Training Strategy: During training, we utilize a sparsity regularization loss to
supervise the model:

Lreg =
1

H ×W

∑
h,w

M [w, h] (2)

According the Simulated Annealing strategy, we set the weight of Lreg:

λ = min(
t

Tepoch
, 1) · λ0 (3)

where t is the current number of epochs, Tepoch is empirically set to 20, and λ0

is set to 0.004. And the temperature parameter τ in the Gumbel softmax trick
is initialized as 1 and gradually decreased to 0.5:

τ = max(1− t

Ttemp
, 0.5) (4)

where Ttemp is set to 40 in this paper.
Testing: When testing, we directly replace the mask-prediction CNN with
Residuals to select the pixels to calculate. This process is formulated as:

Mtest[x, y] = (Res[x, y] ̸= 0) (5)

where Res[x, y] represents the Residual value at position [x, y]. When Residual
is equal to 0, the pixel is skipped.

4 Experiments

4.1 Implementation Details

We use dataset REDS[20] for training. REDS dataset has large motion between
consecutive frames captured from a hand-held device. We evaluate the networks
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on the datasets REDS4[27] and Vid4[18]. All frames are first smoothed by a
Gaussian kernel with standard deviation of 1.5 and downsampled by 4. Because
our framework is designed for compressed videos, we further encode the datasets
with H.264[22], the most common video codec, at different compression rates.
The recommended CRF value in H.264 is between 18 and 28, and the default is
23. In experiments, we set CRF values to 18, 23, and 28 and use the FFmpeg
codec to encode the datasets.

Our goal is to design efficient and online processing VSR systems, so we do
experiments on the unidirectional recurrent VSR models. We apply our MV-
based alignment to the existing models FRVSR[23], RLSP[8], and RSDN[11] to
verify the effect of our MV-based alignment. In the original setting, FRVSR
utilizes an optical flow to align the HR output from the past frame; RLSP
and RSDN do not explicitly align the information from the previous frame. For
a more comprehensive comparison, we also embed a pre-trained optical flow
model SpyNet[21] into FRVSR, RLSP and RSDN to compare with our MV-
based alignment. And we further fine-tune the SpyNet along with the model
training. The training details follow the original works.

To evaluate the Residual informed sparse process, we first train a baseline
recurrent VSR model without alignment. Then we apply MV-based alignment
and Residual-based sparse processing to the baseline model to train our model.
To balance model complexity and performance, the number of Resblocks for
the recurrent module is set to 7. The number of feature channels is 128. We
use Charbonnier loss[4] as pixel-wise loss since it better handles outliers and
improves the performance over the conventional L2-loss[15]. The training details
are provided in the supplementary material.

4.2 Effect of MV-based Alignment

We apply our MV-based alignment approach to the FRVSR, RLSP, and RSDN.
The quantitative results are summarized in Tab. 1. XXX+Flow means that
model XXX is aligned with the SpyNet. XXX+MV represents that model XXX
is aligned with MVs. Original FRVSR aligns the HR estimation from the past
frame by an optical flow model trained from scratch. In FRVSR+FLow, we re-
place the original optical flow model with pre-trained SpyNet and further refine
the SpyNet when training. From the results, we can find FRVSR+Flow outper-
forms the original FRVSR. Probably because SpyNet estimates the optical flow
more precisely than the original model. RLSP and RSDN do not explicitly align
the information from the past frame. Due to the alignment, models with MV-
based alignment achieve better performance than their original counterparts,
even achieving comparable performance with the models with SpyNet. And we
can see that as the CRF is increased, the performance gap between optical flow-
based methods and MV-based methods narrows, which makes sense since when
the CRF is large, the video compression artifacts are more apparent, and the
optical flow estimate mistakes are more significant. So our MV-based alignment
can replace the existing optical flow estimation model in unidirectional recur-
rent VSR models to save computation. For RLSP and RSDN, our approach can
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Table 1: The quantitative comparison (PSNR/ SSIM/ LPIPS) on
REDS4[27]. PSNR is calculated on Y-channel; SSIM and LPIPS are calculated
on RGB-channel. Red and blue colors indicate the best and the second-best
performance, respectively. 4× upsampling is performed.

Model
Compressed Results

Params (M) Runtime (ms)
CRF18 CRF23 CRF28

FRVSR[23] 28.27/0.7367/0.3884 27.34/0.6965/0.4495 26.11/0.6492/0.5219 2.59 24

FRVSR+MV 29.01/0.7660/0.3470 27.77/0.7155/0.4141 26.32/0.6598/0.4969 0.84 20

FRVSR+Flow 29.15/0.7701/0.3393 27.85/0.7177/0.4076 26.32/0.6600/0.4928 2.28 32

RLSP[8] 28.46/0.7476/0.3614 27.47/0.7052/0.4243 26.20/0.6551/0.5015 4.37 27

RLSP+MV 29.26/0.7739/0.3309 27.95/0.7225/0.3973 26.43/0.6646/0.4815 4.37 28

RLSP+Flow 29.37/0.7769/0.3249 28.01/0.7242/0.3947 26.44/0.6651/0.4788 5.81 39

RSDN[11] 28.67/0.7575/0.3405 27.62/0.7144/0.3997 26.29/0.6642/0.4731 6.18 49

RSDN+MV 29.37/0.7804/0.3163 28.02/0.7294/0.3799 26.50/0.6724/0.4558 6.18 51

RSDN+Flow 29.59/0.7862/0.3094 28.13/0.7314/0.3770 26.51/0.6739/0.4523 7.62 62

achieve better performance with a tiny increase in runtime because of feature
warping. It should be noted that our MV-based alignment does not increase
the number of parameters. For FRVSR, because we remove its optical flow sub-
model, our MV-based alignment can reduce the parameters and runtime but
achieve superior performance over the original version.

Fig. 4: Visual results on REDS4[27]

Fig. 4 shows the qualitative comparison. The models with our MV-based
alignment restore finer details than the original FRVSR, RLSP, and RSDN.
Compared with the models with optical flow estimation, our MV-aligned models
achieve comparable visual results. More examples are provided in the Section 2.1
of supplementary material.
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Table 2: The quantitative comparison (PSNR/ SSIM/ LPIPS) between
image alignment and feature alignment on REDS4[27]. PSNR is calculated on
Y-channel; SSIM and LPIPS are calculated on RGB-channel. The best results
are highlighted in bold.

Model CRF18 CRF23 CRF28

(a) 28.59/0.7546/0.3420 27.56/0.7122/0.3999 26.26/0.6622/0.4719

(b) 29.32/0.7783/0.3186 28.00/0.7273/0.3818 26.47/0.6706/0.4569

(c) 29.11/0.7675/0.3294 27.83/0.7172/0.3957 26.33/0.6604/0.4787

Image Alignment Vs Feature Alignment: As mentioned above, spatial
alignment plays an important role in the VSR systems. The existing works with
alignment can be divided into two categories: image alignment and feature align-
ment. We conduct experiments to analyze each of the categories and explain our
design considerations about alignment. We design a recurrent baseline without
alignment (Model (a)) and its MV-aligned versions. Model (b) is the MV-aligned
model in feature space. And we apply MV-alignment on the HR prediction of
the past frame to build a Model (c) with image alignment. The results are sum-
marized in Tab. 2. The models with alignment outperform the baseline model,
which further demonstrates the importance of alignment. And we find Model (b)
achieves better performance than Model (c), so the alignment in feature space
is more effective than in pixel level. The reason is that MV is block-wise motion
estimation, the warped images inevitably suffer from information distortion. But
there is a certain degree of redundancy in feature space, and this phenomenon is
alleviated. Besides, the features contain more high-frequency information than
images.

4.3 Effect of Residual Informed Sparse Processing

We apply the Residual informed sparse processing to the aligned model to get
a more efficient model. The quantitative results are summarized in Tab. 3. The
Baseline represents the baseline mentioned in Section 4.1; Baseline+MV means
the MV-aligned model. MV+Res is the Residual-informed sparse processing.
The Sparse rate is the ratio of pixels skipped by the network to all pixels in
the image. As Tab. 3 shows, benefit from MV-based alignment, Baseline+MV
achieves significant gains over the Baseline. The most gratifying result is that
our sparse processing with MV-alignment and Residuals achieves a superior or
comparable performance over Baseline with lots of computation saved. For the
default CRF 23 in FFmpeg, our model can save about 70% computation on
REDS4 and Vid4. CRF 18 means that the encoded video is visually lossless.
So it needs more Residuals to decrease the encoding error. The sparse process-
ing can save about 50% computation under this condition and achieve better
performance than Baseline. For CRF 28, the sparse processing can save much
more computation because the Residuals are sparser, and the performance is
still comparable with the Baseline.
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Table 3: The quantitative results (PSNR/ SSIM/ Sparse rate) of Resid-
ual informed sparse model on REDS4[27] and Vid4[18]. PSNR is calculated on
Y-channel; SSIM is calculated on RGB-channel. The Sparse rate is the ratio of
pixels skipped by the network to all pixels in the image. Red and blue colors
indicate the best and the second-best performance, respectively. 4× upsampling
is performed.

Model
REDS4[27] Vid4[18]

CRF18 CRF23 CRF28 CRF18 CRF23 CRF28

Baseline 28.59/0.7546/0. 27.56/0.7122/0. 26.26/0.6622/0. 24.61/0.6668/0. 23.91/0.6135/0. 22.87/0.5429/0.

Baseline+MV 29.32/0.7783/0. 28.00/0.7273/0. 26.47/0.6706/0. 25.13/0.6990/0. 24.20/0.6355/0. 23.01/0.5557/0.

MV+Res 29.03/0.7639/0.56 27.72/0.7131/0.75 26.15/0.6516/0.89 25.02/0.6800/0.49 24.04/0.6132/0.72 22.81/0.5333/0.90

We conduct qualitative comparisons on datasets REDS4 and Vid4. The re-
sults are shown in Fig. 5. The Residual informed model achieves finer details than
the Baseline. More examples are provided in the Section 2.2 of supplementary
material.

Fig. 5: Visual results of the Residual informed sparse process on Vid4[18] and
REDS4[27]

CNN-based Mask Vs Residual-based Mask: We use a light CNN to pre-
dict the spatial mask for our Residual informed sparse processing during training.
And when testing, we directly extract the Residuals from compressed videos to
generate the spatial mask. In this section, we analyze the characteristics of the
CNN-predicted mask and Residual-generated mask. As Fig. 6 shows, we can
quickly identify the contours of objects and locate the details and textures from
CNN-based masks. The Residual-based masks focus on the errors between the
recurrent frame and the MV-warped past frame. Because Residuals are more
likely to appear in the areas with details, the highlights of Residual-based masks
also follow the location of details. Besides, the CNN-based masks are more con-
tinuous than the Residual-based mask. We also present the performance of the
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Fig. 6: Visual results of the spatial mask on REDS4[27]

models with CNN-based mask and Residual-based mask in Tab. 4. The results
show that different from the Residual-based mask, the Sparse rate of CNN-base
masks changes little with different CRF. So the CNN-based mask only highlights
the main objects in the image. The Residual-based masks focus on the errors
about MV-based alignment. For CRF 18, the information loss is slight, so the
amount of Residuals is large, and the model achieves better performance than
the model with the CNN-based mask. And for CRF 23 and 28, our model also
outperforms the model with the CNN-based mask with a similar Sparse rate.
The reason is that our Residual-based model follows the characteristics of video
compression and is more suitable for models with MV-based alignment. Our
Residual-based mask locates the “important” areas that need to be refined more
precisely.

Table 4: The quantitative comparison (PSNR/ SSIM/ Sparse rate)
about spatial mask on REDS4[27]. PSNR is calculated on Y-channel; SSIM and
LPIPS are calculated on RGB-channel. The best results are highlighted in bold.

Model CNN Mask Res Mask

Compression

results

CRF18 28.82/0.7492/0.74 29.03/0.7639/0.56

CRF23 27.62/0.7040/0.76 27.72/0.7131/0.75

CRF28 26.08/0.6456/0.79 26.15/0.6516/0.89

4.4 Temporal Consistency

Fig. 7 shows the temporal profile of the video super-resolution results, which
is produced by extracting a horizontal row of pixels at the same position from
consecutive frames and stacking them vertically. The “ResSparse Model” is the
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model with our Residual informed sparse processing. The temporal profile pro-
duced by the model with our Residual informed sparse processing is temporally
smoother, which means higher temporal consistency, and much sharper than the
baseline model with about 70% computation of the baseline model saved when
CRF is 23.

Fig. 7: Visualization of temporal profile for the green line on the calendar se-
quence with CRF 23.

5 Conclusion

This paper proposes to reuse codec information from compressed videos to assist
the video super-resolution task. We employ Motion Vector to align mismatched
frames in unidirectional recurrent VSR systems efficiently. Experiments have
shown that Motion Vector based alignment can significantly improve perfor-
mance with negligible additional computation. It even achieves comparable per-
formance with optical flow based alignment. To further improve the efficiency of
VSR models, we extract Residuals from compressed video and design Residual
informed sparse processing. Combined with Motion Vector based alignment, our
Residual informed processing can precisely locate the areas needed to calculate
and skip the “unimportant” regions to save computation. And the performance
of our sparse model is still comparable with the baseline. Additionally, given
the importance of motion information for low-level video tasks and the inher-
ent temporal redundancy of videos, our codec information assisted framework
(CIAF) has the potential to be applied to other tasks such as compressed video
enhancement and denoising.
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