Skip to main content

A Codec Information Assisted Framework for Efficient Compressed Video Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Online processing of compressed videos to increase their resolutions attracts increasing and broad attention. Video Super-Resolution (VSR) using recurrent neural network architecture is a promising solution due to its efficient modeling of long-range temporal dependencies. However, state-of-the-art recurrent VSR models still require significant computation to obtain a good performance, mainly because of the complicated motion estimation for frame/feature alignment and the redundant processing of consecutive video frames. In this paper, considering the characteristics of compressed videos, we propose a Codec Information Assisted Framework (CIAF) to boost and accelerate recurrent VSR models for compressed videos. Firstly, the framework reuses the coded video information of Motion Vectors to model the temporal relationships between adjacent frames. Experiments demonstrate that the models with Motion Vector based alignment can significantly boost the performance with negligible additional computation, even comparable to those using more complex optical flow based alignment. Secondly, by further making use of the coded video information of Residuals, the framework can be informed to skip the computation on redundant pixels. Experiments demonstrate that the proposed framework can save up to 70% of the computation without performance drop on the REDS4 test videos encoded by H.264 when CRF is 23.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: CVPR, pp. 2848–2857. IEEE Computer Society (2017)

    Google Scholar 

  2. Chan, K.C.K., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: CVPR, pp. 4947–4956. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  3. Chan, K.C.K., Zhou, S., Xu, X., Loy, C.C.: BasicVSR++: improving video super-resolution with enhanced propagation and alignment. CoRR abs/2104.13371 (2021)

    Google Scholar 

  4. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: ICIP (2), pp. 168–172. IEEE Computer Society (1994)

    Google Scholar 

  5. Chen, P., Yang, W., Wang, M., Sun, L., Hu, K., Wang, S.: Compressed domain deep video super-resolution. IEEE Trans. Image Process. 30, 7156–7169 (2021)

    Article  Google Scholar 

  6. Dai, J., et al.: Deformable convolutional networks. In: ICCV, pp. 764–773. IEEE Computer Society (2017)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  8. Fuoli, D., Gu, S., Timofte, R.: Efficient video super-resolution through recurrent latent space propagation. In: ICCV Workshops, pp. 3476–3485. IEEE (2019)

    Google Scholar 

  9. Habibian, A., Abati, D., Cohen, T.S., Bejnordi, B.E.: Skip-convolutions for efficient video processing. In: CVPR, pp. 2695–2704. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  10. Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: CVPR, pp. 3897–3906. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  11. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 645–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_38

    Chapter  Google Scholar 

  12. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (Poster). OpenReview.net (2017)

    Google Scholar 

  13. Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: CVPR, pp. 3224–3232. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  14. Kong, X., Zhao, H., Qiao, Y., Dong, C.: ClassSR: a general framework to accelerate super-resolution networks by data characteristic. In: CVPR, pp. 12016–12025. Computer Vision Foundation/IEEE (2021)

    Google Scholar 

  15. Lai, W., Huang, J., Ahuja, N., Yang, M.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR, pp. 5835–5843. IEEE Computer Society (2017)

    Google Scholar 

  16. Li, W., Tao, X., Guo, T., Qi, L., Lu, J., Jia, J.: MuCAN: multi-correspondence aggregation network for video super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 335–351. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_20

    Chapter  Google Scholar 

  17. Li, Y., Jin, P., Yang, F., Liu, C., Yang, M., Milanfar, P.: COMISR: compression-informed video super-resolution. CoRR abs/2105.01237 (2021)

    Google Scholar 

  18. Liu, C., Sun, D.: A Bayesian approach to adaptive video super resolution. In: CVPR, pp. 209–216. IEEE Computer Society (2011)

    Google Scholar 

  19. Liu, M., Zhang, Z., Hou, L., Zuo, W., Zhang, L.: Deep adaptive inference networks for single image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 131–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_8

    Chapter  Google Scholar 

  20. Nah, S., et al.: NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study. In: CVPR Workshops, pp. 1996–2005. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  21. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: CVPR, pp. 2720–2729. IEEE Computer Society (2017)

    Google Scholar 

  22. Rec, BI: H.264, advanced video coding for generic audiovisual services (2005)

    Google Scholar 

  23. Sajjadi, M.S.M., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: CVPR, pp. 6626–6634. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  24. Sun, D., Yang, X., Liu, M., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR, pp. 8934–8943. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  25. Tian, Y., Zhang, Y., Fu, Y., Xu, C.: TDAN: temporally-deformable alignment network for video super-resolution. In: CVPR, pp. 3357–3366. Computer Vision Foundation/IEEE (2020)

    Google Scholar 

  26. Wang, L., et al.: Learning sparse masks for efficient image super-resolution. CoRR abs/2006.09603 (2020)

    Google Scholar 

  27. Wang, X., Chan, K.C.K., Yu, K., Dong, C., Loy, C.C.: EDVR: video restoration with enhanced deformable convolutional networks. In: CVPR Workshops, pp. 1954–1963. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  28. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR, pp. 606–615. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  29. Wu, Z., et al.: BlockDrop: dynamic inference paths in residual networks. In: CVPR, pp. 8817–8826. Computer Vision Foundation/IEEE Computer Society (2018)

    Google Scholar 

  30. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  31. Yi, P., et al.: Omniscient video super-resolution. CoRR abs/2103.15683 (2021)

    Google Scholar 

  32. Yi, P., Wang, Z., Jiang, K., Jiang, J., Ma, J.: Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: ICCV, pp. 3106–3115. IEEE (2019)

    Google Scholar 

  33. Zhang, Z., Sze, V.: FAST: a framework to accelerate super-resolution processing on compressed videos. In: CVPR Workshops, pp. 1015–1024. IEEE Computer Society (2017)

    Google Scholar 

  34. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets V2: more deformable, better results. In: CVPR, pp. 9308–9316. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

Download references

Acknowledgement

The authors Rong Xie and Li Song were supported by National Key R &D Project of China under Grant 2019YFB1802701, the 111 Project (B07022 and Sheitc No.150633) and the Shanghai Key Laboratory of Digital Media Processing and Transmissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Song .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9329 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Zou, X., Guo, J., Yan, Y., Xie, R., Song, L. (2022). A Codec Information Assisted Framework for Efficient Compressed Video Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics