Skip to main content

ManiFest: Manifold Deformation for Few-Shot Image Translation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Most image-to-image translation methods require a large number of training images, which restricts their applicability. We instead propose ManiFest: a framework for few-shot image translation that learns a context-aware representation of a target domain from a few images only. To enforce feature consistency, our framework learns a style manifold between source and additional anchor domains (assumed to be composed of large numbers of images). The learned manifold is interpolated and deformed towards the few-shot target domain via patch-based adversarial and feature statistics alignment losses. All of these components are trained simultaneously during a single end-to-end loop. In addition to the general few-shot translation task, our approach can alternatively be conditioned on a single exemplar image to reproduce its specific style. Extensive experiments demonstrate the efficacy of ManiFest on multiple tasks, outperforming the state-of-the-art on all metrics. Our code is avaliable at https://github.com/cv-rits/ManiFest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ACDC does not provide annotated daytime clear weather sequences.

  2. 2.

    For FUNIT [29] and COCO-FUNIT [44], we modify hyperparameters per authors suggestions to adapt to the ACDC and Dark Zurich datasets.

References

  1. Abid, M.A., Hedhli, I., Lalonde, J.F., Gagne, C.: Image-to-image translation with low resolution conditioning. arXiv (2021)

    Google Scholar 

  2. Cao, J., Hou, L., Yang, M.H., He, R., Sun, Z.: Remix: towards image-to-image translation with limited data. In: CVPR (2021)

    Google Scholar 

  3. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  4. Cherian, A., Sullivan, A.: SEM-GAN: semantically-consistent image-to-image translation. In: WACV (2019)

    Google Scholar 

  5. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR (2020)

    Google Scholar 

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  7. Dell’Eva, A., Pizzati, F., Bertozzi, M., de Charette, R.: Leveraging local domains for image-to-image translation. In: VISAPP (2022)

    Google Scholar 

  8. Endo, Y., Kanamori, Y.: Few-shot semantic image synthesis using stylegan prior. CoRR (2021)

    Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  11. Hu, H., Wang, W., Zhou, W., Zhao, W., Li, H.: Model-aware gesture-to-gesture translation. In: CVPR (2021)

    Google Scholar 

  12. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  13. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: ECCV (2018)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  15. Jia, Z., et al.: Semantically robust unpaired image translation for data with unmatched semantics statistics. In: ICCV (2021)

    Google Scholar 

  16. Jiang, L., Zhang, C., Huang, M., Liu, C., Shi, J., Loy, C.C.: TSIT: a simple and versatile framework for image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 206–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_13

    Chapter  Google Scholar 

  17. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS (2020)

    Google Scholar 

  18. Lee, H.-Y.: DRIT++: diverse image-to-image translation via disentangled representations. Int. J. Comput. Vis. 128(10), 2402–2417 (2020). https://doi.org/10.1007/s11263-019-01284-z

    Article  Google Scholar 

  19. Li, P., Yu, X., Yang, Y.: Super-resolving cross-domain face miniatures by peeking at one-shot exemplar. In: ICCV (2021)

    Google Scholar 

  20. Li, P., Liang, X., Jia, D., Xing, E.P.: Semantic-aware grad-gan for virtual-to-real urban scene adaption. In: BMVC (2018)

    Google Scholar 

  21. Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., Yang, M.H.: Universal style transfer via feature transforms. In: NeurIPS (2017)

    Google Scholar 

  22. Li, Y., Liu, M.Y., Li, X., Yang, M.H., Kautz, J.: A closed-form solution to photorealistic image stylization. In: ECCV (2018)

    Google Scholar 

  23. Li, Y., Zhang, R., Lu, J., Shechtman, E.: Few-shot image generation with elastic weight consolidation. In: NeurIPS (2020)

    Google Scholar 

  24. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: CVPR (2019)

    Google Scholar 

  25. Lin, C.T., Wu, Y.Y., Hsu, P.H., Lai, S.H.: Multimodal structure-consistent image-to-image translation. In: AAAI (2020)

    Google Scholar 

  26. Lin, J., Wang, Y., He, T., Chen, Z.: Learning to transfer: Unsupervised meta domain translation. In: AAAI (2020)

    Google Scholar 

  27. Lin, J., Xia, Y., Liu, S., Zhao, S., Chen, Z.: Zstgan: an adversarial approach for unsupervised zero-shot image-to-image translation. Neurocomputing 461, 327–335 (2021)

    Article  Google Scholar 

  28. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NeurIPS (2017)

    Google Scholar 

  29. Liu, M.Y., et al.: Few-shot unsupervised image-to-image translation. In: ICCV (2019)

    Google Scholar 

  30. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: CVPR (2017)

    Google Scholar 

  31. Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T., Van Gool, L.: Exemplar guided unsupervised image-to-image translation with semantic consistency. In: ICLR (2019)

    Google Scholar 

  32. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  33. Mo, S., Cho, M., Shin, J.: Instagan: instance-aware image-to-image translation. In: ICLR (2019)

    Google Scholar 

  34. Ojha, U., et al.: Few-shot image generation via cross-domain correspondence. In: CVPR (2021)

    Google Scholar 

  35. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  36. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  37. Park, T., et al.: Swapping autoencoder for deep image manipulation. In: NeurIPS (2020)

    Google Scholar 

  38. Patashnik, O., Danon, D., Zhang, H., Cohen-Or, D.: Balagan: cross-modal image translation between imbalanced domains. In: CVPR Workshops (2021)

    Google Scholar 

  39. Pizzati, F., Cerri, P., de Charette, R.: Model-based occlusion disentanglement for image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 447–463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_27

    Chapter  Google Scholar 

  40. Pizzati, F., Cerri, P., de Charette, R.: CoMoGAN: continuous model-guided image-to-image translation. In: CVPR (2021)

    Google Scholar 

  41. Pizzati, F., Cerri, P., de Charette, R.: Guided disentanglement in generative networks. arXiv (2021)

    Google Scholar 

  42. Ramirez, P.Z., Tonioni, A., Di Stefano, L.: Exploiting semantics in adversarial training for image-level domain adaptation. In: IPAS (2018)

    Google Scholar 

  43. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: ICCV (2017)

    Google Scholar 

  44. Saito, K., Saenko, K., Liu, M.-Y.: COCO-FUNIT: few-shot unsupervised image translation with a content conditioned style encoder. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 382–398. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_23

    Chapter  Google Scholar 

  45. Sakaridis, C., Dai, D., Van Gool, L.: Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. In: T-PAMI (2020)

    Google Scholar 

  46. Sakaridis, C., Dai, D., Van Gool, L.: ACDC: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: ICCV (2021)

    Google Scholar 

  47. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: CVPR (2020)

    Google Scholar 

  48. Tang, H., Xu, D., Yan, Y., Corso, J.J., Torr, P.H., Sebe, N.: Multi-channel attention selection gans for guided image-to-image translation. In: CVPR (2019)

    Google Scholar 

  49. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI Global (2010)

    Google Scholar 

  50. Tremblay, M., Halder, S.S., de Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. Int. J. Comput. Vis. 129, 1–20 (2020). https://doi.org/10.1007/s11263-020-01366-3

    Article  Google Scholar 

  51. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. In: T-PAMI (2019)

    Google Scholar 

  52. Wang, X., Yu, K., Dong, C., Tang, X., Loy, C.C.: Deep network interpolation for continuous imagery effect transition. In: CVPR (2019)

    Google Scholar 

  53. Wang, Y., Khan, S., Gonzalez-Garcia, A., Weijer, J.V.D., Khan, F.S.: Semi-supervised learning for few-shot image-to-image translation. In: CVPR (2020)

    Google Scholar 

  54. Wang, Y., Mantecon, H.L., Lopez-Fuentes, J.V.D.W., Raducanu, B.: Transferi2i: transfer learning for image-to-image translation from small datasets. In: ICCV (2021)

    Google Scholar 

  55. Wu, W., Cao, K., Li, C., Qian, C., Loy, C.C.: Transgaga: geometry-aware unsupervised image-to-image translation. In: CVPR (2019)

    Google Scholar 

  56. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: ICCV (2019)

    Google Scholar 

  57. Yu, X., Chen, Y., Liu, S., Li, T., Li, G.: Multi-mapping image-to-image translation via learning disentanglement. In: NeurIPS (2019)

    Google Scholar 

  58. Zhan, F., et al.: Unbalanced feature transport for exemplar-based image translation. In: CVPR (2021)

    Google Scholar 

  59. Zhang, P., Zhang, B., Chen, D., Yuan, L., Wen, F.: Cross-domain correspondence learning for exemplar-based image translation. In: CVPR (2020)

    Google Scholar 

  60. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  61. Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-efficient gan training. In: NeurIPS (2020)

    Google Scholar 

  62. Zheng, C., Cham, T.J., Cai, J.: The spatially-correlative loss for various image translation tasks. In: CVPR (2021)

    Google Scholar 

  63. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: CVPR (2017)

    Google Scholar 

  64. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: NeurIPS (2017)

    Google Scholar 

  65. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: Sean: image synthesis with semantic region-adaptive normalization. In: CVPR (2020)

    Google Scholar 

  66. Zhu, Z., Xu, Z., You, A., Bai, X.: Semantically multi-modal image synthesis. In: CVPR (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by Vislab Ambarella, the French project SIGHT (ANR-20-CE23-0016), and received support from Service de coopération et d’action culturelle du Consulat général de France à Québec. It used HPC resources from GENCI-IDRIS (Grant 2021-AD011012808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pizzati .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15399 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pizzati, F., Lalonde, JF., de Charette, R. (2022). ManiFest: Manifold Deformation for Few-Shot Image Translation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics