Skip to main content

Metric Learning Based Interactive Modulation for Real-World Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Interactive image restoration aims to restore images by adjusting several controlling coefficients, which determine the restoration strength. Existing methods are restricted in learning the controllable functions under the supervision of known degradation types and levels. They usually suffer from a severe performance drop when the real degradation is different from their assumptions. Such a limitation is due to the complexity of real-world degradations, which can not provide explicit supervision to the interactive modulation during training. However, how to realize the interactive modulation in real-world super-resolution has not yet been studied. In this work, we present a Metric Learning based Interactive Modulation for Real-World Super-Resolution (MM-RealSR). Specifically, we propose an unsupervised degradation estimation strategy to estimate the degradation level in real-world scenarios. Instead of using known degradation levels as explicit supervision to the interactive mechanism, we propose a metric learning strategy to map the unquantifiable degradation levels in real-world scenarios to a metric space, which is trained in an unsupervised manner. Moreover, we introduce an anchor point strategy in the metric learning process to normalize the distribution of metric space. Extensive experiments demonstrate that the proposed MM-RealSR achieves excellent modulation and restoration performance in real-world super-resolution. Codes are available at https://github.com/TencentARC/MM-RealSR.

X. Wang—Project lead.

Chong Mou is an intern in ARC Lab, Tencent PCG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 126–135 (2017)

    Google Scholar 

  2. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  3. Cai, H., He, J., Qiao, Y., Dong, C.: Toward interactive modulation for photo-realistic image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 294–303 (2021)

    Google Scholar 

  4. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3086–3095 (2019)

    Google Scholar 

  5. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11065–11074 (2019)

    Google Scholar 

  6. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell. 44(05), 2567–2581 (2022)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  9. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of the International Conference on Computer Vision (ICCV), pp. 349–356 (2009)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 27 (2014)

    Google Scholar 

  11. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1735–1742 (2006)

    Google Scholar 

  12. He, J., Dong, C., Qiao, Y.: Modulating image restoration with continual levels via adaptive feature modification layers. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11056–11064 (2019)

    Google Scholar 

  13. He, J., Dong, C., Qiao, Yu.: Interactive multi-dimension modulation with dynamic controllable residual learning for image restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 53–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_4

    Chapter  Google Scholar 

  14. Ji, X., Cao, Y., Tai, Y., Wang, C., Li, J., Huang, F.: Real-world super-resolution via kernel estimation and noise injection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 466–467 (2020)

    Google Scholar 

  15. Jiang, J., Zhang, K., Timofte, R.: Towards flexible blind JPEG artifacts removal. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4997–5006 (2021)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  19. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Stat. 30(1), 1–50 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kong, S., Shen, X., Lin, Z., Mech, R., Fowlkes, C.: Photo aesthetics ranking network with attributes and content adaptation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 662–679. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_40

    Chapter  Google Scholar 

  21. Kulis, B., et al.: Metric learning: a survey. Found. Trends Mach. Learn. 5(4), 287–364 (2012)

    Article  Google Scholar 

  22. Liu, A., Liu, Y., Gu, J., Qiao, Y., Dong, C.: Blind image super-resolution: a survey and beyond. arXiv preprint arXiv:2107.03055 (2021)

  23. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp. 1673–1682 (2018)

    Google Scholar 

  24. Liu, Y., Wang, S., Zhang, J., Wang, S., Ma, S., Gao, W.: Iterative network for image super-resolution. IEEE Trans. Multimed. 24, 2259–2272 (2021)

    Article  Google Scholar 

  25. Lu, J., Hu, J., Zhou, J.: Deep metric learning for visual understanding: an overview of recent advances. IEEE Signal Process. Mag. 34(6), 76–84 (2017)

    Article  Google Scholar 

  26. Lugmayr, A., et al.: AIM 2019 challenge on real-world image super-resolution: methods and results. In: Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 3575–3583 (2019)

    Google Scholar 

  27. Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 291–300 (2020)

    Google Scholar 

  28. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  29. Mou, C., Wang, Q., Zhang, J.: Deep generalized unfolding networks for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17399–17410 (2022)

    Google Scholar 

  30. Mou, C., Zhang, J., Wu, Z.: Dynamic attentive graph learning for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4328–4337 (2021)

    Google Scholar 

  31. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines (1998)

    Google Scholar 

  32. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  33. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 114–125 (2017)

    Google Scholar 

  34. Wang, W., Guo, R., Tian, Y., Yang, W.: CFSNet: toward a controllable feature space for image restoration. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4140–4149 (2019)

    Google Scholar 

  35. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-ESRGAN: training real-world blind super-resolution with pure synthetic data. In: Proceedings of the International Conference on Computer Vision Workshops (ICCVW), pp. 1905–1914 (2021)

    Google Scholar 

  36. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–615 (2018)

    Google Scholar 

  37. Wang, X., Yu, K., Dong, C., Tang, X., Loy, C.C.: Deep network interpolation for continuous imagery effect transition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1692–1701 (2019)

    Google Scholar 

  38. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision Workshops (ECCVW) (2018)

    Google Scholar 

  39. Wei, P., et al.: Component divide-and-conquer for real-world image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 101–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_7

    Chapter  Google Scholar 

  40. You, D., Zhang, J., Xie, J., Chen, B., Ma, S.: Coast: controllable arbitrary-sampling network for compressive sensing. IEEE Trans. Image Process. 30, 6066–6080 (2021)

    Article  MathSciNet  Google Scholar 

  41. Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 701–710 (2018)

    Google Scholar 

  42. Zhang, J., Xiong, R., Zhao, C., Ma, S., Zhao, D.: Exploiting image local and nonlocal consistency for mixed gaussian-impulse noise removal. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 592–597 (2012)

    Google Scholar 

  43. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4791–4800 (2021)

    Google Scholar 

  44. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3262–3271 (2018)

    Google Scholar 

  45. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595 (2018)

    Google Scholar 

  46. Zhang, Y., et al.: Collaborative representation cascade for single-image super-resolution. IEEE Trans. Syst. Man Cybern. Syst. 49, 845–860 (2017)

    Article  Google Scholar 

  47. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  48. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. In: International Conference on Learning Representations (2019)

    Google Scholar 

  49. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2018)

    Google Scholar 

  50. Zhou, R., Susstrunk, S.: Kernel modeling super-resolution on real low-resolution images. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2433–2443 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Shenzhen Fundamental Research Program (No. GXWD20201231165807007-20200807164903001), National Natural Science Foundation of China (61906184, U1913210), and the Shanghai Committee of Science and Technology, China (Grant No. 21DZ1100100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12536 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mou, C., Wu, Y., Wang, X., Dong, C., Zhang, J., Shan, Y. (2022). Metric Learning Based Interactive Modulation for Real-World Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics