Abstract
In various learning-based image restoration tasks, such as image denoising and image super-resolution, the degradation representations were widely used to model the degradation process and handle complicated degradation patterns. However, they are less explored in learning-based image deblurring as blur kernel estimation cannot perform well in real-world challenging cases. We argue that it is particularly necessary for image deblurring to model degradation representations since blurry patterns typically show much larger variations than noisy patterns or high-frequency textures. In this paper, we propose a framework to learn spatially adaptive degradation representations of blurry images. A novel joint image reblurring and deblurring learning process is presented to improve the expressiveness of degradation representations. To make learned degradation representations effective in reblurring and deblurring, we propose a Multi-Scale Degradation Injection Network (MSDI-Net) to integrate them into the neural networks. With the integration, MSDI-Net can handle various and complicated blurry patterns adaptively. Experiments on the GoPro and RealBlur datasets demonstrate that our proposed deblurring framework with the learned degradation representations outperforms state-of-the-art methods with appealing improvements. The code is released at https://github.com/dasongli1/Learning_degradation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chan, T., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)
Chen, H., Gu, J., Gallo, O., Liu, M.Y., Veeraraghavan, A., Kautz, J.: Reblur2Deblur: deblurring videos via self-supervised learning. In: 2018 IEEE International Conference on Computational Photography (ICCP), pp. 1–9 (2018)
Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HiNet: half instance normalization network for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 182–192 (2021)
Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4641–4650 (2021)
Cho, S., Matsushita, Y., Lee, S.: Removing non-uniform motion blur from images. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)
Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3848–3856 (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision (2016)
Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings (2014)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22. Curran Associates, Inc. (2009)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR, pp. 8183–8192. Computer Vision Foundation/IEEE Computer Society (2018)
Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: ICCV, pp. 8877–8886. IEEE (2019)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971 (2009)
Li, D., Zhang, Y., Law, K.L., Wang, X., Qin, H., Li, H.: Efficient burst raw denoising with variance stabilization and multi-frequency denoising network. Int. J. Comput. Vis. 130(8), 2060–2080 (2022)
Liang, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Mutual affine network for spatially variant kernel estimation in blind image super-resolution. In: IEEE International Conference on Computer Vision (2021)
Lim, J.H., Ye, J.C.: Geometric GAN (2017). arXiv:1705.02894
Liu, G., Chang, S., Ma, Y.: Blind image deblurring using spectral properties of convolution operators. IEEE Trans. Image Process. 23(12), 5047–5056 (2014)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings (2017)
Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. arXiv preprint arXiv:1803.02077 (2018)
Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: CVPR (2018)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (2018)
Nagy, J.G., O’Leary, D.P.: Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19(4), 1063–1082 (1998)
Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016)
Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1628–1636 (2016)
Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 327–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_20
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Ren, D., Zhang, K., Wang, Q., Hu, Q., Zuo, W.: Neural blind deconvolution using deep priors. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3338–3347. IEEE Computer Society, Los Alamitos, CA, USA (2020)
Rim, J., Lee, H., Won, J., Cho, S.: Real-world blur dataset for learning and benchmarking deblurring algorithms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 184–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_12
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 (2015)
Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1439–1451 (2016)
Shan, Q., Xiong, W., Jia, J.: Rotational motion deblurring of a rigid object from a single image. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)
Son, H., Lee, J., Lee, J., Cho, S., Lee, S.: Recurrent video deblurring with blur-invariant motion estimation and pixel volumes. ACM Trans. Graph. (TOG) 40(5) (2021)
Starck, J.L., Murtagh, F., Bijaoui, A.: Image Processing and Data Analysis. Cambridge University Press, Cambridge (1998)
Suin, M., Purohit, K., Rajagopalan, A.N.: Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In: CVPR, pp. 3603–3612. Computer Vision Foundation/IEEE (2020)
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 769–777 (2015)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Tran, P., Tran, A., Phung, Q., Hoai, M.: Explore image deblurring via encoded blur kernel space. In: Proceedings of the In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: CVPR (2021)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Wang, Y., Huang, H., Xu, Q., Liu, J., Liu, Y., Wang, J.: Practical deep raw image denoising on mobile devices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_1
Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 491–498 (2010)
Xintao Wang, Ke Yu, C.D., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: IEEE Conference on Computer Vision Pattern Recognition (CVPR) (2018)
Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)
Zamir, S.W.,et al.: Multi-stage progressive image restoration. In: CVPR (2021)
Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7354–7363. PMLR (2019)
Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR, pp. 5978–5986. Computer Vision Foundation/IEEE (2019)
Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)
Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Transactions on Image Processing (2018)
Zhang, K., et al.: Deblurring by realistic blurring. In: CVPR, pp. 2734–2743. Computer Vision Foundation/IEEE (2020)
Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Acknowledgments
This work is supported in part by Centre for Perceptual and Interactive Intelligence Limited, in part by the General Research Fund through the Research Grants Council of Hong Kong under Grants (Nos. 14204021, 14207319, 14203118, 14208619), in part by Research Impact Fund Grant No. R5001-18, in part by CUHK Strategic Fund.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, D., Zhang, Y., Cheung, K.C., Wang, X., Qin, H., Li, H. (2022). Learning Degradation Representations for Image Deblurring. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)