Skip to main content

Frequency and Spatial Dual Guidance for Image Dehazing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

In this paper, we propose a novel image dehazing framework with frequency and spatial dual guidance. In contrast to most existing deep learning-based image dehazing methods that primarily exploit the spatial information and neglect the distinguished frequency information, we introduce a new perspective to address image dehazing by jointly exploring the information in the frequency and spatial domains. To implement frequency and spatial dual guidance, we delicately develop two core designs: amplitude guided phase module in the frequency domain and global guided local module in the spatial domain. Specifically, the former processes the global frequency information via deep Fourier transform and reconstructs the phase spectrum under the guidance of the amplitude spectrum, while the latter integrates the above global frequency information to facilitate the local feature learning in the spatial domain. Extensive experiments on synthetic and real-world datasets demonstrate that our method outperforms the state-of-the-art approaches both visually and quantitatively. Our code is released publicly at https://github.com/yuhuUSTC/FSDGN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1014–1018 (2019)

    Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Timofte, R.: NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 444–445 (2020)

    Google Scholar 

  3. Ancuti, C.O., Ancuti, C., Timofte, R., Van Gool, L., Zhang, L., Yang, M.H.: Ntire 2019 image dehazing challenge report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–13 (2019)

    Google Scholar 

  4. Araujo, A., Norris, W., Sim, J.: Computing receptive fields of convolutional neural networks. Distill 4(11), e21 (2019)

    Article  Google Scholar 

  5. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  6. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, M., Zhang, H., Huang, H., Geng, Q., Li, Y., Huang, G.: Frequency domain image translation: More photo-realistic, better identity-preserving. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13930–13940 (2021)

    Google Scholar 

  8. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 576–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_36

    Chapter  Google Scholar 

  9. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: half instance normalization network for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 182–192 (2021)

    Google Scholar 

  10. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  11. Chi, L., Tian, G., Mu, Y., Xie, L., Tian, Q.: Fast non-local neural networks with spectral residual learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2142–2151 (2019)

    Google Scholar 

  12. Deng, Q., Huang, Z., Tsai, C.-C., Lin, C.-W.: HardGAN: a haze-aware representation distillation gan for single image dehazing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 722–738. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_43

    Chapter  Google Scholar 

  13. Dong, H.,et al.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2157–2167 (2020)

    Google Scholar 

  14. Dong, J., Pan, J.: Physics-based feature dehazing networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 188–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_12

    Chapter  Google Scholar 

  15. Fattal, R.: Single image dehazing. ACM Trans. Graphics (TOG) 27(3), 1–9 (2008)

    Article  Google Scholar 

  16. Fattal, R.: Dehazing using color-lines. ACM Trans. Graphics (TOG) 34(1), 1–14 (2014)

    Article  Google Scholar 

  17. Fu, M., Liu, H., Yu, Y., Chen, J., Wang, K.: DW-GAN: a discrete wavelet transform GAN for nonhomogeneous dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 203–212 (2021)

    Google Scholar 

  18. Guo, T., Li, X., Cherukuri, V., Monga, V.: Dense scene information estimation network for dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  19. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)

    Google Scholar 

  22. Hong, M., Xie, Y., Li, C., Qu, Y.: Distilling image dehazing with heterogeneous task imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3462–3471 (2020)

    Google Scholar 

  23. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  24. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  25. Le, H., Borji, A.: What are the receptive, effective receptive, and projective fields of neurons in convolutional neural networks? arXiv preprint arXiv:1705.07049 (2017)

  26. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: All-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)

    Google Scholar 

  27. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: End-to-end united video dehazing and detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  28. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using swin transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1833–1844 (2021)

    Google Scholar 

  30. Liu, J., Wu, H., Xie, Y., Qu, Y., Ma, L.: Trident dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 430–431 (2020)

    Google Scholar 

  31. Liu, R., Fan, X., Hou, M., Jiang, Z., Luo, Z., Zhang, L.: Learning aggregated transmission propagation networks for haze removal and beyond. IEEE Trans. Neural Networks Learn. Syst. 30(10), 2973–2986 (2018)

    Article  Google Scholar 

  32. Liu, X., Ma, Y., Shi, Z., Chen, J.: GridDehazeNet: attention-based multi-scale network for image dehazing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7314–7323 (2019)

    Google Scholar 

  33. Liu, Y., Pan, J., Ren, J., Su, Z.: Learning deep priors for image dehazing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2492–2500 (2019)

    Google Scholar 

  34. Mao, X., Liu, Y., Shen, W., Li, Q., Wang, Y.: Deep residual Fourier transformation for single image deblurring. arXiv preprint arXiv:2111.11745 (2021)

  35. McCartney, E.J.: Optics of the atmosphere: scattering by molecules and particles. New York (1976)

    Google Scholar 

  36. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. Proc. IEEE 69(5), 529–541 (1981)

    Article  Google Scholar 

  37. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: Feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020)

    Google Scholar 

  38. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160–8168 (2019)

    Google Scholar 

  39. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  40. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  41. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253–3261 (2018)

    Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  43. Sakaridis, C., Dai, D., Hecker, S., Van Gool, L.: Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 707–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_42

    Chapter  Google Scholar 

  44. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  45. Skarbnik, N., Zeevi, Y.Y., Sagiv, C.: The importance of phase in image processing. Technion-Israel Institute of Technology, Faculty of Electrical Engineering (2009)

    Google Scholar 

  46. Suvorov, R., et al.: Resolution-robust large mask inpainting with Fourier convolutions. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2149–2159 (2022)

    Google Scholar 

  47. Wang, C., et al.: EAA-Net: a novel edge assisted attention network for single image dehazing. Knowl.-Based Syst. 228, 107279 (2021)

    Article  Google Scholar 

  48. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)

    Google Scholar 

  49. Wu, H., et al.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10551–10560 (2021)

    Google Scholar 

  50. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)

    Google Scholar 

  51. Ye, T., et al.: Perceiving and modeling density is all you need for image dehazing. arXiv preprint arXiv:2111.09733 (2021)

  52. Yi, P., Wang, Z., Jiang, K., Jiang, J., Ma, J.: Progressive fusion video super-resolution network via exploiting non-local spatio-temporal correlations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3106–3115 (2019)

    Google Scholar 

  53. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  54. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  55. Zhang, J., Cao, Y., Fang, S., Kang, Y., Wen Chen, C.: Fast haze removal for nighttime image using maximum reflectance prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7418–7426 (2017)

    Google Scholar 

  56. Zheng, Z., et al.: Ultra-high-definition image dehazing via multi-guided bilateral learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16180–16189. IEEE (2021)

    Google Scholar 

  57. Zhu, Q., Mai, J., Shao, L.: Single image dehazing using color attenuation prior. In: BMVC. Citeseer (2014)

    Google Scholar 

  58. Zou, W., Jiang, M., Zhang, Y., Chen, L., Lu, Z., Wu, Y.: SDWNet: a straight dilated network with wavelet transformation for image deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1895–1904 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the JKW Research Funds under Grant 20-163-14-LZ-001-004-01 and the University Synergy Innovation Program of Anhui Province under Grant GXXT-2019-025. We acknowledge the support of GPU cluster built by MCC Lab of Information Science and Technology Institution, USTC. We also thank the technical support from Jie Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Zheng, N., Zhou, M., Huang, J., Xiao, Z., Zhao, F. (2022). Frequency and Spatial Dual Guidance for Image Dehazing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics