Skip to main content

Zero-Shot Learning for Reflection Removal of Single 360-Degree Image

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

The existing methods for reflection removal mainly focus on removing blurry and weak reflection artifacts and thus often fail to work with severe and strong reflection artifacts. However, in many cases, real reflection artifacts are sharp and intensive enough such that even humans cannot completely distinguish between the transmitted and reflected scenes. In this paper, we attempt to remove such challenging reflection artifacts using 360-Degree images. We adopt the zero-shot learning scheme to avoid the burden of collecting paired data for supervised learning and the domain gap between different datasets. We first search for the reference image of the reflected scene in a 360-degree image based on the reflection geometry, which is then used to guide the network to restore the faithful colors of the reflection image. We collect 30 test 360-Degree images exhibiting challenging reflection artifacts and demonstrate that the proposed method outperforms the existing state-of-the-art methods on 360-Degree images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chenyang, L., et al.: A categorized reflection removal dataset with diverse real-world scenes. In: CVPRW (2022)

    Google Scholar 

  2. Dong, Z., Xu, K., Yang, Y., Bao, H., Xu, W., Lau, R.W.: Location-aware single image reflection removal. In: ICCV (2021)

    Google Scholar 

  3. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  4. Fan, Q., Yang, J., Hua, G., Chen, B., Wipf, D.: A generic deep architecture for single image reflection removal and image smoothing. In: ICCV (2017)

    Google Scholar 

  5. Farid, H., Adelson, E.H.: Separating reflections and lighting using independent components analysis. In: CVPR (1999)

    Google Scholar 

  6. Gandelsman, Y., Shocher, A., Irani, M.: “Double-dip”: unsupervised image decomposition via coupled deep-image-priors. In: CVPR (2019)

    Google Scholar 

  7. Guo, X., Cao, X., Ma, Y.: Robust separation of reflection from multiple images. In: CVPR (2014)

    Google Scholar 

  8. Han, B.J., Sim, J.Y.: Glass reflection removal using co-saliency-based image alignment and low-rank matrix completion in gradient domain. IEEE TIP 27(10), 4873–4888 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Hong, Y., Zheng, Q., Zhao, L., Jiang, X., Kot, A.C., Shi, B.: Panoramic image reflection removal. In: CVPR (2021)

    Google Scholar 

  10. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. ACM 5, 339–342 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  12. Kim, S., Huo, Y., Yoon, S.E.: Single image reflection removal with physically-based training images. In: CVPR (2020)

    Google Scholar 

  13. Kong, N., Tai, Y.W., Shin, J.S.: A physically-based approach to reflection separation: from physical modeling to constrained optimization. IEEE TPAMI 36(2), 209–221 (2014)

    Article  Google Scholar 

  14. Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity prior. IEEE TPAMI 29(9), 1647–1654 (2007)

    Article  Google Scholar 

  15. Levin, A., Zomet, A., Weiss, Y.: Separating reflections from a single image using local features. In: CVPR (2004)

    Google Scholar 

  16. Li, C., Yang, Y., He, K., Lin, S., Hopcroft, J.E.: Single image reflection removal through cascaded refinement. In: CVPR (2020)

    Google Scholar 

  17. Li, Y., Brown, M.S.: Exploiting reflection change for automatic reflection removal. In: ICCV (2013)

    Google Scholar 

  18. Li, Y., Brown, M.S.: Single image layer separation using relative smoothness. In: CVPR (2014)

    Google Scholar 

  19. Sarel, B., Irani, M.: Separating transparent layers of repetitive dynamic behaviors. In: ICCV (2005)

    Google Scholar 

  20. Schechner, Y.Y., Kiryati, N., Shamir, J.: Blind recovery of transparent and semireflected scenes. In: CVPR (2000)

    Google Scholar 

  21. Schechner, Y.Y., Shamir, J., Kiryati, N.: Polarization and statistical analysis of scenes containing a semireflector. J. Opt. Soc. Amer. 17(2), 276–284 (2000)

    Article  Google Scholar 

  22. Shih, Y., Krishnan, D., Durand, F., Freeman, W.T.: Reflection removal using ghosting cues. In: CVPR (2015)

    Google Scholar 

  23. Simon, C., Park, I.K.: Reflection removal for in-vehicle black box videos. In: CVPR (2015)

    Google Scholar 

  24. Sinha, S.N., Kopf, J., Goesele, M., Scharstein, D., Szeliski, R.: Image-based rendering for scenes with reflections. ACM TOG 31(4), 100:1–100:10 (2012)

    Google Scholar 

  25. Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: CRRN: multi-scale guided concurrent reflection removal network. In: CVPR (2018)

    Google Scholar 

  26. Wang, J., Zhong, Y., Dai, Y., Zhang, K., Ji, P., Li, H.: Displacement-invariant matching cost learning for accurate optical flow estimation. In: NeurIPS (2020)

    Google Scholar 

  27. Wei, K., Yang, J., Fu, Y., David, W., Huang, H.: Single image reflection removal exploiting misaligned training data and network enhancements. In: CVPR (2019)

    Google Scholar 

  28. Wen, Q., Tan, Y., Qin, J., Liu, W., Han, G., He, S.: Single image reflection removal beyond linearity. In: CVPR (2019)

    Google Scholar 

  29. Xue, T., Rubinstein, M., Liu, C., Freeman, W.T.: A computational approach for obstruction-free photography. ACM TOG 34(4), 79:1–79:11 (2015)

    Google Scholar 

  30. Yang, J., Gong, D., Liu, L., Shi, Q.: Seeing deeply and bidirectionally: a deep learning approach for single image reflection removal. In: ECCV (2018)

    Google Scholar 

  31. Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual losses. In: CVPR (2018)

    Google Scholar 

  32. Zheng, Q., Shi, B., Chen, J., Jiang, X., Duan, L.Y., Kot, A.C.: Single image reflection removal with absorption effect. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea within the Ministry of Science and ICT (MSIT) under Grant 2020R1A2B5B01002725, and by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2021-0-02068, Artificial Intelligence Innovation Hub) and (No.2020-0-01336, Artificial Intelligence Graduate School Program(UNIST)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Sim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16185 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, BJ., Sim, JY. (2022). Zero-Shot Learning for Reflection Removal of Single 360-Degree Image. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics