Skip to main content

Perceiving and Modeling Density for Image Dehazing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

In the real world, the degradation of images taken under haze can be quite complex, where the spatial distribution of haze varies from image to image. Recent methods adopt deep neural networks to recover clean scenes from hazy images directly. However, due to the generic design of network architectures and the failure in estimating an accurate haze degradation model, the generalization ability of recent dehazing methods on real-world hazy images is not ideal. To address the problem of modeling real-world haze degradation, we propose a novel Separable Hybrid Attention (SHA) module to perceive haze density by capturing positional-sensitive features in the orthogonal directions to achieve this goal. Moreover, a density encoding matrix is proposed to model the uneven distribution of the haze explicitly. The density encoding matrix generates positional encoding in a semi-supervised way – such a haze density perceiving and modeling strategy captures the unevenly distributed degeneration at the feature-level effectively. Through a suitable combination of SHA and density encoding matrix, we design a novel dehazing network architecture, which achieves a good complexity-performance trade-off. Comprehensive evaluation on both synthetic datasets and real-world datasets demonstrates that the proposed method surpasses all the state-of-the-art approaches with a large margin both quantitatively and qualitatively. The code is released in https://github.com/Owen718/ECCV22-Perceiving-and-Modeling-Density-for-Image-Dehazing.

T. Ye, Y. Zhang and M. Jiang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancuti, C.O., Ancuti, C., Sbert, M., Timofte, R.: Dense haze: a benchmark for image dehazing with dense-haze and haze-free images. In: IEEE International Conference on Image Processing (ICIP). IEEE ICIP 2019 (2019)

    Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Timofte, R., Vleeschouwer, C.D.: O-haze: a dehazing benchmark with real hazy and haze-free outdoor images. In: IEEE Conference on Computer Vision and Pattern Recognition, NTIRE Workshop. NTIRE CVPR’18 (2018)

    Google Scholar 

  3. Ancuti, C.O., Ancuti, C., Vasluianu, F.A., Timofte, R.: Ntire 2020 challenge on nonhomogeneous dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 490–491 (2020)

    Google Scholar 

  4. Ancuti, C.O., Ancuti, C., Vasluianu, F.A., Timofte, R.: Ntire 2021 nonhomogeneous dehazing challenge report. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 627–646 (2021)

    Google Scholar 

  5. Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  6. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168–172. IEEE (1994)

    Google Scholar 

  8. Dong, H., et al.: Multi-scale boosted dehazing network with dense feature fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2157–2167 (2020)

    Google Scholar 

  9. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34(1), 13:1–13:14 (2014)

    Google Scholar 

  10. Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)

    Google Scholar 

  11. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  12. Hong, M., Xie, Y., Li, C., Qu, Y.: Distilling image dehazing with heterogeneous task imitation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3462–3471 (2020)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Jiang, Y., Sun, C., Zhao, Y., Yang, L.: Image dehazing using adaptive bi-channel priors on superpixels. Comput. Vis. Image Underst. 165, 17–32 (2017)

    Article  Google Scholar 

  15. Katiyar, K., Verma, N.: Single image haze removal algorithm using color attenuation prior and multi-scale fusion. Int. J. Comput. Appl. 141(10), 037–042 (2016). https://doi.org/10.5120/ijca2016909827

  16. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)

    Google Scholar 

  17. Li, B.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y., Yao, T., Pan, Y., Mei, T.: Contextual transformer networks for visual recognition. arXiv preprint arXiv:2107.12292 (2021)

  19. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: attention-based multi-scale network for image dehazing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7314–7323 (2019)

    Google Scholar 

  20. Liu, Y., et al.: From synthetic to real: image dehazing collaborating with unlabeled real data. arXiv preprint arXiv:2108.02934 (2021)

  21. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020)

    Google Scholar 

  22. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  23. Wu, H., et al.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10551–10560 (2021)

    Google Scholar 

  24. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported partially by the Natural Science Foundation of Fujian Province of China under Grant (2021J01867), Education Department of Fujian Province under Grant (JAT190301), Foundation of Jimei University under Grant (ZP2020034), the National Nature Science Foundation of China under Grant (61901117), Natural Science Foundation of Chongqing, China under Grant (No. cstc2020jcyj-msxmX0324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkang Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12441 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, T. et al. (2022). Perceiving and Modeling Density for Image Dehazing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics