Skip to main content

Active Label Correction Using Robust Parameter Update and Entropy Propagation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13681))

Included in the following conference series:

  • 1837 Accesses

Abstract

Label noise is prevalent in real-world visual learning applications and correcting all label mistakes can be prohibitively costly. Training neural network classifiers on such noisy datasets may lead to significant performance degeneration. Active label correction (ALC) attempts to minimize the re-labeling costs by identifying examples for which providing correct labels will yield maximal performance improvements. Existing ALC approaches typically select the examples that the classifier is least confident about (e.g. with the largest entropies). However, such confidence estimates can be unreliable as the classifier itself is initially trained on noisy data. Also, naïvely selecting a batch of low confidence examples can result in redundant labeling of spatially adjacent examples. We present a new ALC algorithm that addresses these challenges. Our algorithm robustly estimates label confidence values by regulating the contributions of individual examples in the parameter update of the network. Further, our algorithm avoids redundant labeling by promoting diversity in batch selection through propagating the confidence of each newly labeled example to the entire dataset. Experiments involving four benchmark datasets and two types of label noise demonstrate that our algorithm offers a significant improvement in re-labeling efficiency over state-of-the-art ALC approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We denote a single update step of W for a given mini-batch (Eq. 2) by ‘pass’ while an ‘epoch’ involves multiple mini-batch passes including all the training examples.

  2. 2.

    This algorithm cannot be directly applied to our setting as it requires multiple annotations for each newly labeled example. Our approach selects the points with the largest sums of the loss and entropy values.

  3. 3.

    DACL’s accuracy often decreased in the second iteration as it switches from the entire dataset D to the labeled dataset \(S^t\) in estimating the class transition matrix T. At early ALC stages, these data points are limited and the corresponding T estimation is unreliable, leading to degraded performances.

References

  1. Arachie, C., Huang, B.: A general framework for adversarial label learning. JMLR 22, 1–33 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Bernhardt, M., et al.: Active label cleaning: improving dataset quality under resource constraints. In: arXiv:2109.00574 (2021)

  3. Budninskiy, M., Abdelaziz, A., Tong, Y., Desbrun, M.: Laplacian-optimized diffusion for semi-supervised learning. Comput. Aided Geom. Des. 79 (2020)

    Google Scholar 

  4. Shampine, L.F.: Tolerance proportionality in ODE codes. In: Bellen, A., Gear, C.W., Russo, E. (eds.) Numerical Methods for Ordinary Differential Equations. LNM, vol. 1386, pp. 118–136. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0089235

    Chapter  Google Scholar 

  5. Fang, T., Lu, N., Niu, G., Sugiyama, M.: Rethinking importance weighting for deep learning under distribution shift. In: NeurIPS (2020)

    Google Scholar 

  6. Gao, R., Saar-Tsechansky, M.: Cost-accuracy aware adaptive labeling for active learning. In: AAAI, pp. 2569–2576 (2020)

    Google Scholar 

  7. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical report. California Institute of Technology (2007)

    Google Scholar 

  8. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: NIPS (2018)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  10. Hein, M.: Geometrical Aspects of Statistical Learning Theory. Ph.D. thesis. Technical University of Darmstadt, Germany (2005)

    Google Scholar 

  11. Hein, M., Audibert, J.-Y., von Luxburg, U.: From graphs to manifolds – weak and strong pointwise consistency of graph laplacians. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 470–485. Springer, Heidelberg (2005). https://doi.org/10.1007/11503415_32

    Chapter  Google Scholar 

  12. Hein, M., Maier, M.: Manifold denoising. In: NIPS, pp. 561–568 (2007)

    Google Scholar 

  13. Henter, D., Stahlt, A., Ebbecke, M., Gillmann, M.: Classifier self-assessment: active learning and active noise correction for document classification. In: ICDAR, pp. 276–280 (2015)

    Google Scholar 

  14. Huang, J., Qu, L., Jia, R., Zhao, B.: O2U-Net: a simple noisy label detection approach for deep neural networks. In: ICCV, pp. 3326–3334 (2019)

    Google Scholar 

  15. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, 2nd edn. (2012)

    Google Scholar 

  16. Kremer, J., Sha, F., Igel, C.: Robust active label correction. In: AISTATS, pp. 308–316 (2018)

    Google Scholar 

  17. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Technical report. University of Toronto (2009)

    Google Scholar 

  18. Krüger, M., Novo, A.S., Nattermann, T., Mohamed, M., Bertram, T.: Reducing noise in label annotation: a lane change prediction case study. In: IFAC Symposium on Intelligent Autonomous Vehicles, pp. 221–226 (2019)

    Google Scholar 

  19. Li, S.-Y., Shi, Y., Huang, S.-J., Chen, S.: Improving deep label noise learning with dual active label correction. Mach. Learn. 111, 1–22 (2021). https://doi.org/10.1007/s10994-021-06081-9

  20. Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. IEEE TPAMI 38(3), 447–461 (2016)

    Article  MathSciNet  Google Scholar 

  21. Nallapati, R., Surdeanu, M., Manning, C.: CorrActive learning: learning from noisy data through human interaction. In: IJCAI Workshop on Intelligence and Interaction (2009)

    Google Scholar 

  22. Parde, N., Nielsen, R.D.: Finding patterns in noisy crowds: regression-based annotation aggregation for crowdsourced data. In: EMNLP, pp. 1907–1912 (2017)

    Google Scholar 

  23. Park, S., Jo, D.U., Choi, J.Y.: Over-fit: noisy-label detection based on the overfitted model property. In: arXiv:2106.07217 (2021)

  24. Pierri, F., Piccardi, C., Ceri, S.: Topology comparison of twitter diffusion networks effectively reveals misleading information. Sci. Rep. 10(1372), 1–19 (2020)

    Google Scholar 

  25. Rebbapragada, U., Brodley, C.E., Sulla-Menashe, D., Friedl, M.A.: Active label correction. In: ICDM, pp. 1080–1085 (2012)

    Google Scholar 

  26. Rehbein, I., Ruppenhofer, J.: Detecting annotation noise in automatically labelled data. In: ACL, pp. 1160–1170 (2018)

    Google Scholar 

  27. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: ICML (2018)

    Google Scholar 

  28. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press (2009)

    Google Scholar 

  29. Shen, Y., Sanghavi, S.: Learning with bad training data via iterative trimmed loss minimization. In: ICML (2019)

    Google Scholar 

  30. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? improving data quality and data mining using multiple, noisy labelers. In: KDD, pp. 614–622 (2009)

    Google Scholar 

  31. Stokes, J.W., Kapoor, A., Ray, D.: Asking for a second opinion: re-querying of noisy multi-class labels. In: ICASSP, pp. 2329–2333 (2016)

    Google Scholar 

  32. Szlam, A.D., Maggioni, M., Coifman, R.R.: Regularization on graphs with function-adapted diffusion processes. JMLR 9, 1711–1739 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63 (2020)

    Google Scholar 

  34. Urner, R., David, S.B., Shamir, O.: Learning from weak teachers. In: AISTATS, pp. 1252–1260 (2012)

    Google Scholar 

  35. van Rooyen, B., Menon, A.K., Williamson, R.C.: Learning with symmetric label noise: the importance of being unhinged. In: NIPS (2015)

    Google Scholar 

  36. Wang, S., et al.: Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun. 12(1), 1–13 (2021)

    Google Scholar 

  37. Xiao, H., Rasul, K., Vollgraf, R.: FashionMNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017)

  38. Yan, S., Chaudhuri, K., Javidi, T.: Active learning from imperfect labelers. In: NIPS (2016)

    Google Scholar 

  39. Younesian, T., Epema, D., Chen, L.Y.: Active learning for noisy data streams using weak and strong labelers. arXiv:2010.14149v1 (2020)

  40. Zhang, C., Chaudhuri, K.: Active learning from weak and strong labelers. In: NIPS (2015)

    Google Scholar 

  41. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: ICLR (2017)

    Google Scholar 

  42. Zhang, M., Hu, L., Shi, C., Wang, X.: Adversarial label-flipping attack and defense for graph neural networks. In: ICDM (2020)

    Google Scholar 

  43. Zhu, Z., Dong, Z., Liu, Y.: Detecting corrupted labels without training a model to predict. In: ICML (2022)

    Google Scholar 

  44. Ørting, S.N., et al.: A survey of crowdsourcing in medical image analysis. Hum. Comput. 7, 1–26 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

We thank James Tompkin for fruitful discussions and the anonymous reviewers for their insightful comments. This work was supported by the National Research Foundation of Korea (NRF) grant (No. 2021R1A2C2012195, Data efficient machine learning for estimating skeletal pose across multiple domains, 1/2) and Institute of Information & Communications Technology Planning & Evaluation (IITP) grant (No. 2021–0–00537, Visual common sense through self-supervised learning for restoration of invisible parts in images, 1/2) both funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang In Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 228 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, K.I. (2022). Active Label Correction Using Robust Parameter Update and Entropy Propagation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics