Abstract
Multiple Instance Learning (MIL) methods have become increasingly popular for classifying gigapixel-sized Whole-Slide Images (WSIs) in digital pathology. Most MIL methods operate at a single WSI magnification, by processing all the tissue patches. Such a formulation induces high computational requirements and constrains the contextualization of the WSI-level representation to a single scale. Certain MIL methods extend to multiple scales, but they are computationally more demanding. In this paper, inspired by the pathological diagnostic process, we propose ZoomMIL, a method that learns to perform multi-level zooming in an end-to-end manner. ZoomMIL builds WSI representations by aggregating tissue-context information from multiple magnifications. The proposed method outperforms the state-of-the-art MIL methods in WSI classification on two large datasets, while significantly reducing computational demands with regard to Floating-Point Operations (FLOPs) and processing time by 40–50\(\times \). Our code is available at: https://github.com/histocartography/zoommil.
K. Thandiackal and B. Chen—Contributed equally.
G. Jaume—Work done while at IBM Research Europe.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adnan, M., Kalra, S., Tizhoosh, H.: Representation learning of histopathology images using graph neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 988–989 (2020)
Anklin, V., et al.: Learning whole-slide segmentation from inexact and incomplete labels using tissue graphs. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 636–646. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_59
Aygüneş, B., Aksoy, S., Cinbiş, R., Kösemehmetoğlu, K., Önder, S., Üner, A.: Graph convolutional networks for region of interest classification in breast histopathology. In: SPIE Medical Imaging 2020: Digital Pathology, vol. 11320, pp. 134–141. SPIE (2020)
Bejnordi, B., Litjens, G., Hermsen, M., Karssemeijer, N., van der Laak, J.: A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images. In: SPIE Medical Imaging 2015: Digital Pathology, vol. 9420, pp. 99–104. SPIE (2015)
Bejnordi, B., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017)
Bejnordi, B., et al.: Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J. Med. Imaging 4(4), 044504 (2017)
BenTaieb, A., Hamarneh, G.: Predicting cancer with a recurrent visual attention model for histopathology images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 129–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_15
Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J., Bach, F.: Learning with differentiable pertubed optimizers. Adv. Neural. Inf. Process. Syst. 34, 9508–9519 (2020)
Brancati, N., et al.: BRACS: a dataset for BReAst carcinoma subtyping in H &E histology images. arXiv:2111.04740 (2021)
Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019)
Cordonnier, J., Mahendran, A., Dosovitskiy, A.: Differentiable patch selection for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2351–2360 (2021)
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W., Xing, E.: Reinforced auto-zoom net: towards accurate and fast breast cancer segmentation in whole-slide images. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) Workshop, pp. 317–325 (2018)
Elmore, J., et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313, 1122–1132 (2015)
Gao, Y., et al.: Multi-scale learning based segmentation of glands in digital colorectal pathology images. In: SPIE Medical Imaging 2016: Digital Pathology, vol. 9791, pp. 175–180. SPIE (2016)
Gomes, D., Porto, S., Balabram, D., Gobbi, H.: Inter-observer variability between general pathologists and a specialist in breast pathology in the diagnosis of lobular neoplasia, columnar cell lesions, atypical ductal hyperplasia and ductal carcinoma in situ of the breast. Diagn. Pathol. 9, 1–9 (2014)
Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3852–3861 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Ho, D., et al.: Deep multi-magnification networks for multi-class breast cancer image segmentation. Comput. Med. Imaging Graph. 88, 101866 (2021)
Isle, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning (ICML), vol. 35, pp. 2127–2136 (2018)
Jaume, G., Pati, P., Anklin, V., Foncubierta-Rodríguez, A., Gabrani, M.: Histocartography: a toolkit for graph analytics in digital pathology. In: MICCAI Workshop on Computational Pathology, pp. 117–128. PMLR (2021)
Jia, Z., Huang, X., Eric, I., Chang, C., Xu, Y.: Constrained deep weak supervision for histopathology image segmentation. IEEE Trans. Med. Imaging 36, 2376–2388 (2017)
Katharopoulos, A., Fleuret, F.: Processing megapixel images with deep attention-sampling models. In: International Conference on Machine Learning (ICML), vol. 36, pp. 3282–3291. PMLR (2019)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) arXiv preprint arXiv:1412.6980 (2014)
Kong, S., Henao, R.: Efficient classification of very large images with tiny objects. arXiv:2106.02694 (2021)
Lerousseau, M., Vakalopoulou, M., Deutsch, E., Paragios, N.: SparseConvMIL: sparse convolutional context-aware multiple instance learning for whole slide image classification. In: MICCAI Workshop on Computational Pathology, pp. 129–139. PMLR (2021)
Li, B., Li, Y., Eliceiri, K.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318–14328 (2021)
Li, J., et al.: A multi-resolution model for histopathology image classification and localization with multiple instance learning. Comput. Biol. Med. 131, 104253 (2021)
Li, R., Yao, J., Zhu, X., Li, Y., Huang, J.: Graph CNN for survival analysis on whole slide pathological images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_20
Liang, Q., et al.: Weakly supervised biomedical image segmentation by reiterative learning. IEEE J. Biomed. Health Inform. 23, 1205–1214 (2018)
Lu, M., et al.: AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021)
Lu, M., Williamson, D., Chen, T., Chen, R., Barbieri, M., Mahmood, F.: Data efficient and weakly supervised computational pathology on whole slide images. Nat. Biomed. Eng. 5, 555–570 (2021)
Myronenko, A., Xu, Z., Yang, D., Roth, H.R., Xu, D.: Accounting for dependencies in deep learning based multiple instance learning for whole slide imaging. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 329–338. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_32
Oliveira, S., et al.: CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance. Sci. Rep. 11(1), 1–15 (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 8024–8035 (2019)
Pati, P., et al.: Hierarchical graph representations in digital pathology. Med. Image Anal. 75, 102264 (2021)
Qaiser, T., Rajpoot, N.: Learning where to see: a novel attention model for automated immunohistochemical scoring. IEEE Trans. Med. Imaging 38, 2620–2631 (2019)
Raju, A., Yao, J., Haq, M.M.H., Jonnagaddala, J., Huang, J.: Graph attention multi-instance learning for accurate colorectal cancer staging. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 529–539. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_51
Shaban, M., et al.: Context-aware convolutional neural network for grading of colorectal cancer histology images. IEEE Trans. Med. Imaging 39, 2395–2405 (2020)
Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural. Inf. Process. Syst. 35, 2136–2147 (2021)
Sirinukunwattana, K., Alham, N.K., Verrill, C., Rittscher, J.: Improving whole slide segmentation through visual context - a systematic study. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 192–200. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_22
Tellez, D., Litjens, G., van der Laak, J., Ciompi, F.: Neural image compression for gigapixel histopathology image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 43, 567–578 (2019)
Tokunaga, H., Teramoto, Y., Yoshizawa, A., Bise, R.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12597–12606 (2019)
Yao, J., Zhu, X., Jonnagaddala, J., Hawkins, N., Huang, J.: Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Med. Image Anal. 65, 101789 (2020)
Zhao, Y., et al.: Predicting lymph node metastasis using histopathological images based on multiple instance learning with deep graph convolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4837–4846 (2020)
Author information
Authors and Affiliations
Contributions
K. Thandiackal and B. Chen—Contributed equally.
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Thandiackal, K. et al. (2022). Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-19803-8_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19802-1
Online ISBN: 978-3-031-19803-8
eBook Packages: Computer ScienceComputer Science (R0)