Abstract
In computer vision, pre-training models based on large-scale supervised learning have been proven effective over the past few years. However, existing works mostly focus on learning from individual task with single data source (e.g., ImageNet for classification or COCO for detection). This restricted form limits their generalizability and usability due to the lack of vast semantic information from various tasks and data sources. Here, we demonstrate that jointly learning from heterogeneous tasks and multiple data sources contributes to universal visual representation, leading to better transferring results of various downstream tasks. Thus, learning how to bridge the gaps among different tasks and data sources is the key, but it still remains an open question. In this work, we propose a representation learning framework called X-Learner, which learns the universal feature of multiple vision tasks supervised by various sources, with expansion and squeeze stage: 1) Expansion Stage: X-Learner learns the task-specific feature to alleviate task interference and enrich the representation by reconciliation layer. 2) Squeeze Stage: X-Learner condenses the model to a reasonable size and learns the universal and generalizable representation for various tasks transferring. Extensive experiments demonstrate that X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs compared to existing representation learning methods. Notably, a single X-Learner model shows remarkable gains of 3.0%, 3.3% and 1.8% over current pre-trained models on 12 downstream datasets for classification, object detection and semantic segmentation.
Y. He, G. Huang, S. Chen, J. Teng—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To avoid ambiguity, we refer to a task as a general vision problem such as classification, detection or segmentation, and a source as a specific dataset or context within a certain task.
References
Achille, A., Paolini, G., Mbeng, G., Soatto, S.: The information complexity of learning tasks, their structure and their distance. Inf. Inference J. IMA 10(1), 51–72 (2021)
Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)
Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 567–580. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_41
Bilen, H., Vedaldi, A.: Universal representations: the missing link between faces, text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275 (2017)
Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29
Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209–1218 (2018)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)
Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. Adv. Neural. Inf. Process. Syst. 27, 766–774 (2014)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010). Jun
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR workshop, pp. 178–178. IEEE (2004)
Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task groupings for multi-task learning. arXiv preprint arXiv:2109.04617 (2021)
Gao, Y., Ma, J., Zhao, M., Liu, W., Yuille, A.L.: Nddr-CNN: layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3205–3214 (2019)
Ghiasi, G., Zoph, B., Cubuk, E.D., Le, Q.V., Lin, T.Y.: Multi-task self-training for learning general representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8856–8865 (2021)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the ThirteenthInternational Conference on Artificial Intelligence and Statistic, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P.H., Buchatskaya, E., Doersch, C., Pires, B.A., Guo, Z.D., Azar, M.G., et al.: Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)
Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Zero-shot detection via vision and language knowledge distillation. arXiv e-prints, pp. arXiv-2104 (2021)
Guo, Y., Li, Y., Wang, L., Rosing, T.: Depthwise convolution is all you need for learning multiple visual domains. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8368–8375 (2019)
Han, H., Jain, A.K., Wang, F., Shan, S., Chen, X.: Heterogeneous face attribute estimation: a deep multi-task learning approach. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2597–2609 (2017)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Girshick, R., Dollár, P.: Rethinking imagenet pre-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4918–4927 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015)
Joulin, A., Van Der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large weakly supervised data. In: European Conference on Computer Vision. pp. 67–84. Springer (2016)
Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29
Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia (2013)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Kumar, A., Daume III, H.: Learning task grouping and overlap in multi-task learning. arXiv preprint arXiv:1206.6417 (2012)
Li, W.-H., Bilen, H.: Knowledge distillation for multi-task learning. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12540, pp. 163–176. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65414-6_13
Li, Z., Ravichandran, A., Fowlkes, C., Polito, M., Bhotika, R., Soatto, S.: Representation consolidation for training expert students. arXiv preprint arXiv:2107.08039 (2021)
Likhosherstov, V., et al: Polyvit: co-training vision transformers on images, videos and audio. arXiv preprint arXiv:2111.12993 (2021)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, S., Johns, E., Davison, A.J.: End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1871–1880 (2019)
Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12
Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)
Maninis, K.K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1851–1860 (2019)
Mensink, T., Uijlings, J., Kuznetsova, A., Gygli, M., Ferrari, V.: Factors of influence for transfer learning across diverse appearance domains and task types. arXiv preprint arXiv:2103.13318 (2021)
Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–4003 (2016)
Nilsback, M.E., Zisserman, A.: A visual vocabulary for flower classification. In: CVPR, vol. 2, pp. 1447–1454. IEEE (2006)
van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: CVPR, pp. 3498–3505. IEEE (2012)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual adapters. arXiv preprint arXiv:1705.08045 (2017)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 28, 91–99 (2015)
Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021)
Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
Shao, S., et al.: Objects365: a large-scale, high-quality dataset for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8430–8439 (2019)
Shen, Z., Liu, Z., Li, J., Jiang, Y.G., Chen, Y., Xue, X.: Object detection from scratch with deep supervision. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 398–412 (2019)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)
Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147. PMLR (2013)
Van Horn, G., Cole, E., Beery, S., Wilber, K., Belongie, S., Mac Aodha, O.: Benchmarking representation learning for natural world image collections. In: CVPR, pp. 12884–12893 (2021)
Wang, X., Cai, Z., Gao, D., Vasconcelos, N.: Towards universal object detection by domain attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7289–7298 (2019)
Wang, Z., Tsvetkov, Y., Firat, O., Cao, Y.: Gradient vaccine: investigating and improving multi-task optimization in massively multilingual models. arXiv preprint arXiv:2010.05874 (2020)
Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: Sun database: exploring a large collection of scene categories. IJCV 119(1), 3–22 (2016)
Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546 (2019)
Yan, X., Misra, I., Gupta, A., Ghadiyaram, D., Mahajan, D.: Clusterfit: improving generalization of visual representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6509–6518 (2020)
Yang, L., Luo, P., Change Loy, C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3973–3981 (2015)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5525–5533 (2016)
Yang, Y., Eriguchi, A., Muzio, A., Tadepalli, P., Lee, S., Hassan, H.: Improving multilingual translation by representation and gradient regularization. arXiv preprint arXiv:2109.04778 (2021)
Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782 (2020)
Zamir, A.R., Sax, A., Cheerla, N., Suri, R., Cao, Z., Malik, J., Guibas, L.J.: Robust learning through cross-task consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11197–11206 (2020)
Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)
Zhao, X., Li, H., Shen, X., Liang, X., Wu, Y.: A modulation module for multi-task learning with applications in image retrieval. In: Proceedings of the European Conference on Computer Vision, pp. 401–416 (2018)
Zhao, X., Schulter, S., Sharma, G., Tsai, Y.-H., Chandraker, M., Wu, Y.: Object detection with a unified label space from multiple datasets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 178–193. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_11
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)
Zhou, B., et al.: Semantic understanding of scenes through the ade20k dataset. Int. J. Comput. Vision 127(3), 302–321 (2019)
Zhou, X., Koltun, V., Krähenbühl, P.: Simple multi-dataset detection. arXiv preprint arXiv:2102.13086 (2021)
Zhuang, L., Sun, M., Zhou, T., Gao, H., Darrell, T.: Rethinking the value of network pruning (2018)
Zou, D.-N., Zhang, S.-H., Mu, T.-J., Zhang, M.: A new dataset of dog breed images and a benchmark for finegrained classification. Comput. Visual Media 6(4), 477–487 (2020). https://doi.org/10.1007/s41095-020-0184-6
Acknowledgements
This work is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s) and the Shanghai Committee of Science and Technology (Grant No. 21DZ1100100).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
He, Y. et al. (2022). X-Learner: Learning Cross Sources and Tasks for Universal Visual Representation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13686. Springer, Cham. https://doi.org/10.1007/978-3-031-19809-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-19809-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19808-3
Online ISBN: 978-3-031-19809-0
eBook Packages: Computer ScienceComputer Science (R0)