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Figure 1. a) Single-Source Single-Task; b) Single-Source Multi-Task; c) X-Learner: Multi-Source Multi-Task; d) Our proposed X-Learner
achieves the best performances in Classification (average linear probe results across 10 classification datasets), Detection (Pascal VOC
Detection [15]) and Segmentation (Pascal VOC Semantic Segmentation [15]).

Abstract

In computer vision, pre-training models based on large-
scale supervised learning have been proven effective over
the past few years. However, existing works mostly focus
on learning from individual task with single data source
(e.g., ImageNet for classification or COCO for detection).
This restricted form limits their generalizability and us-
ability due to the lack of vast semantic information from
various tasks and data sources. Here, we demonstrate
that jointly learning from heterogeneous tasks and multi-
ple data sources contributes to universal visual representa-
tion, leading to better transferring results of various down-
stream tasks. Thus, learning how to bridge the gaps among
different tasks and data sources is the key, but it still re-
mains an open question. In this work, we propose a rep-
resentation learning framework called X-Learner, which
learns the universal feature of multiple vision tasks su-
pervised by various sources, with expansion and squeeze
stage: 1) Expansion Stage: X-Learner learns the task-
specific feature to alleviate task interference and enrich the

*Equal contribution.
†Corresponding author.

representation by reconciliation layer. 2) Squeeze Stage:
X-Learner condenses the model to a reasonable size and
learns the universal and generalizable representation for
various tasks transferring. Extensive experiments demon-
strate that X-Learner achieves strong performance on dif-
ferent tasks without extra annotations, modalities and com-
putational costs compared to existing representation learn-
ing methods. Notably, a single X-Learner model shows re-
markable gains of 3.0%, 3.3% and 1.8% over current pre-
trained models on 12 downstream datasets for classifica-
tion, object detection and semantic segmentation.

1. Introduction
Substantial advances have been achieved in visual rep-

resentation learning, such as those based on curated large-
scale image datasets with supervised [30, 59], weakly-
supervised [29, 41], semi-supervised [65, 66], as well as
self-supervised [7, 11, 12, 21, 25] pre-training. These visual
representations show promising abilities in improving the
performance on downstream tasks.

Among these pre-training techniques, supervised pre-
training is widely adopted for its clear objective and steady
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training process. Nevertheless, existing works in this direc-
tion only consider individual upstream task1 (e.g., classi-
fication or detection) and most of them solely utilize one
single data source (e.g., ImageNet [13] or COCO [39]).
We argue this single-source single-task (SSST, Fig. 1 (a))
paradigm has several drawbacks: 1) The learned representa-
tion in SSST is specialized for one given task and is likely to
have inferior performance on other tasks [19,26,44,55,56].
2) It misses the potentials of a more robust representation by
integrating characteristic semantic information from differ-
ent tasks. Intuitively, we can opt to a simple hard-sharing
method, i.e. single-source, multi-task (SSMT) paradigm,
as described in Fig. 1 (b), by building many heads, each
of which is specific for one task [24, 55]. However, this
over-simplified algorithm usually encounters task interfer-
ence [43,73], especially for heterogeneous tasks, leading to
a significant drop in performance. Besides, it requires the
same image with a variety of labels [71, 72], which is not
scalable easily due to the high annotation cost. A recent
self-training work [19] attempts to create a pseudo multi-
task dataset to alleviate the data-scarcity issue of multi-
task learning, which follows a similar spirit to other SSMT
works.

In light of issues with previous settings, we focus on uti-
lizing numerous data sources of multiple tasks to learn a
universal visual representation which should transfer well to
various downstream tasks like classification, object detec-
tion and semantic segmentation. To leverage cross-source,
cross-task information and mitigate undesired task interfer-
ence, we propose a new pre-training paradigm X-Learner,
as shown in Fig. 1 (c). The X-Learner contains two ded-
icated stages: 1) Expansion Stage: It first trains a set of
sub-backbones, each of which specifically exploits one task
enriched with multiple sources. It then joins together these
sub-backbones and combine their representational knowl-
edge via our proposed reconciliation layer, forming an ex-
panded backbone with enhanced modeling capacity. 2)
Squeeze Stage: Given the expanded backbone, this stage
reduces the model complexity back to sub-backbone level
and produces a unified and compact multi-task-aware repre-
sentation. This new paradigm has two main advantages: 1)
It can effectively consolidate diverse knowledge from our
new multi-source multi-task learning and avoid task con-
flicts. The resulting representation generalizes well to dif-
ferent types of tasks simultaneously. 2) Compared to tradi-
tional multi-task methods, it is highly extensible with new
tasks and sources, since we only require data sources anno-
tated with single-task labels.

Our contributions are summarized as follows:

• We propose a new multi-source multi-task learning set-
1To avoid ambiguity, we refer to a task as a general vision problem

such as classification, detection or segmentation, and a source as a specific
dataset or context within a certain task.

ting that only requires single-task label per datum, and is
highly scalable with more tasks and sources without re-
quiring any extra annotation effort.

• We present X-Learner, a general framework for learning
a universal representation from supervised multi-source
multi-task learning, with Expansion Stage and Squeeze
Stage. Task interference can be well mitigated by Expan-
sion Stage, while a compact and generalizable model is
produced by Squeeze Stage. With X-Learner, heteroge-
neous tasks can be jointly learned, and the resulting single
model renders a universal visual representation suitable
for various tasks.

• We show the strong transfer ability of feature repre-
sentations learned by our X-Learner. In terms of trans-
fer learning performance, multi-source multi-task learn-
ing with our two-stage design outperforms traditional su-
pervised single/multi-task training, self-supervised learn-
ing and self-training methods. As illustrated in Fig. 1
(d), a model pre-trained with X-Learner exhibits signif-
icant gains (3.0%, 3.3% and 1.8%) over the ImageNet su-
pervised counterpart on downstream image classification,
object detection and semantic segmentation.

• We offer several new insights into representation learn-
ing and the framework design for multi-task and multi-
source learning through extensive experiments.

2. Related Work
Visual Representation Learning. Significant progress has
been made in the field of visual representation learning, in-
cluding unsupervised method [10, 11, 14, 25, 47, 49], super-
vised training [30,59], weakly-supervised learning [29,41],
and semi-supervised learning [65, 66]. A large quantity
of prior works use supervised datasets, including Ima-
geNet1k [31], ImageNet-21K [52], IG-3.5B-17k [41] and
JFT [30], for learning visual representations. In super-
vised pre-training, labeled training data provide significant
improvement for transfer performance in the same task as
the one for which the data are annotated. However, the
ability of transferring across different tasks is not good
enough [57]. In unsupervised learning, [49] focuses on
multi-modal vision language pre-training to achieve strong
performances in classification, but not do well in other vi-
sual tasks like detection [22]. In order to obtain uniformly
high transfer performance on diverse task types, it is impor-
tant to improve the task diversity of training data, justifying
the necessity of multi-task pre-training.

Multi-Task Learning. There has been substantial inter-
est in multi-task learning [4, 8, 23, 40, 50, 62, 72, 74, 77] in
the community. A common practice for multi-task learn-
ing is to share the hidden layers of a backbone model
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Figure 2. Structure of X-Learner. a) illustrates how reconciliation layers make the features from different tasks interact with each other.
We use γ to represent the reconciliation layer. We present two typical ways of connection by reconciliation layer: cross different tasks and
cross multiple layers; b) Features for different tasks are learned in Expansion Stage and unified in Squeeze Stage. After the two stages,
X-Learner obtains a general representation for transferring to downstream tasks.

across different tasks, which is called “hard-sharing” in
the literature. However, such sharing is not always bene-
ficial, in many times hurting performance [23, 63, 69, 70].
To alleviate this, there are several lines of works to solve
the problem in different ways. One of them is the use
of a split architecture with parallel backbones for differ-
ent tasks [18, 40, 45]. [45] proposes a cross-stitch module,
which intelligently combines task-specific networks, avoid-
ing the need to brute-force search through numerous archi-
tectures. Another line of works is improving optimization
during learning [35, 63, 69, 70]. For example, [70] miti-
gates gradient interference by altering the gradients directly,
i.e., performing “gradient surgery”. [63] addresses interfer-
ence by de-conflicting gradients via projection. [35, 36] use
distillation to avoid interference, but they are limited to a
retrained setting, either single-task multi-source or single-
source multi-task. Other works attempt to develop system-
atic techniques to determine which tasks should be trained
together in a multi-task neural network to avoid harmful
conflicts between non-affinitive tasks [1–3, 17, 34]. These
methods perform multi-task learning to improve the perfor-
mances of tasks involved, but they are not concerned with
the transfer performance on downstream tasks. [37] ap-
plies vision transformer on multiple modalities and achieves
impressive performance. For the image modality, it deals
with the classification task only, and learns in a simple hard-
sharing way. The problem of multi-task learning remains. A
recent work [19] turns to semi-supervised learning and con-
structs cross-task pseudo labels with task-specific teachers,
creating a complete multi-task dataset for pre-training. Yet
it only considers the single-source setting, and its student
training still follows a hard-sharing regime.

3. X-Learner
In this section, we introduce X-Learner, which leverages

multiple vision tasks and various data sources to learn a
unified representation that transfers well to a wide range of
downstream tasks. It combines the superior modelling ca-
pacity of a split architecture design with the simplicity of
hard parameter sharing. The whole two-stage framework is
shown in Fig. 2. In Expansion Stage, we learn individual
sub-backbones for different tasks with multi-source data in
parallel. We further interconnect them to an expanded back-
bone that effectively alleviates interference among tasks.
We then condense the expanded backbone to a normal-sized
one in Squeeze Stage, producing the final general represen-
tation for downstream transfer.

3.1. Multi-Task and Multi-Source Learning

As illustrated in Fig. 1 (a), the most common supervised
learning setting involves only one task with a single source,
i.e., a datum from the source has one label or annotation
corresponding to the only task (SSST). There is no task in-
terference during optimization, yet the generated represen-
tation is weak in terms of transferability to other tasks.

Traditional multi-task approaches in previous works con-
currently learn multiple tasks within a single data source
(SSMT), which is shown in Fig. 1 (b). The single data
source should have multiple sets of labels, each for one task.
Such a data source is hardly scalable due to the high anno-
tation cost.

To fix the drawbacks of previous setups, we propose
our multi-source multi-task setting (MSMT), which is dis-
played in Fig. 1 (c). More concretely, let T be the number
of tasks, then for each task t ∈ {1, 2, ..., T}, there are Nt
data sources St = {(Xt

n, Y
t
n)}

Nt
n=1 with labels of the task.

In this way, we only require N =
∑T
t=1Nt single-task data



Algorithm 1 Expansion Stage

Input: Data sources of T tasks {St}Tt=1, where St =
{(Xt

n, Y
t
n)}

Nt
n=1; Sub-backbones {Et}Tt=1; Task losses

{`t}Tt=1; Set of reconciliation layers γ; Total step num-
ber K; Step threshold τ

Output: pre-trained expanded backbone E
1: Initialize {Et}Tt=1 and γ
2: for k ← 1 to K do
3: for t← 1 to T do
4: Sample a batch Bt from St with Nt sources
5: if k ≤ τ then
6: Forward with data Bt on sub-backbone Et
7: Compute task loss `t
8: Update Et separately with gradients from `t
9: end if

10: end for
11: if k > τ then
12: Forward with multi-task data {Bt}Tt=1 on ex-

panded backbone {Et}Tt=1 ∪ γ
13: Compute averaged loss L with Eq. (1)
14: Jointly update {Et}Tt=1 ∪ γ with gradients from L
15: end if
16: end for
17: return {Et}Tt=1 ∪ γ

sources which are easily attainable, avoiding the difficulty
of multi-task annotation. Our setting is also highly exten-
sible since adding new tasks or data sources becomes an
effortless process. During training, the optimization objec-
tive of our multi-task and multi-source paradigm is to sim-
ply minimize the average loss over all the N data sources
consisting of T different tasks:

min
θ
L(θ, {St}Tt=1) =

1

N

T∑
t=1

Nt∑
n=1

`t(θ, (X
t
n, Y

t
n)) (1)

where θ denotes model parameters, and `t refers to the loss
function for task t.

3.2. Expansion Stage

We aim to learn general representation from heteroge-
neous tasks while being least affected by the harmful inter-
ference among tasks. This motivates us to design this Ex-
pansion Stage to learn a split architecture combining multi-
ple single-task networks. We first train T sub-backbones
individually for the T tasks, leveraging their own data
sources. We then join all T sub-backbones into one holis-
tic architecture, integrating information learned from all
tasks to form a general representation. Specifically, we in-
troduce an expanded backbone composed of multiple sub-
backbones corresponding to T tasks, along with several rec-
onciliation layers for connecting them, which we describe

in detail below. The expanded backbone learned in this
pipeline largely 1) preserves the high precision of single-
task training, and 2) combines advantages of all tasks to
achieve better generalizability on downstream tasks. The
full training process is summarized in Algorithm 1.

Reconciliation Layer. As shown in Fig. 2 (a), each recon-
ciliation layer is a link between two sub-backbones of two
tasks. It obtains features from one task, transforms them
with a few operations, and then fuses them into the features
of another task at the same or a deeper layer.

Suppose each sub-backbone hasD output layers, and we
denote the original output of layer i ∈ {1, 2, ..., D} from
the sub-backbone for task t ∈ {1, 2, ..., T} by Eti . Let γk→tj→i
(j ≤ i, k 6= t) refer to the reconciliation layer taking Ekj
as input and providing its output to the ith layer of another
task t. According to Fig. 2 (a), γk→tj→i can be expressed as
the composition of one γb and i− j times of γa. Receiving
all cross-task and cross-layer features, we take a summation
to compute the final fused output F ti at layer i of the sub-
backbone for task t:

F ti = Eti +
T∑
k=1
k 6=t

i∑
j=1

γk→tj→i
(
Ekj
)
. (2)

Adding reconciliation layers directly facilitates interac-
tions among information from different tasks. Thus it
closely unifies all sub-backbones into one expanded back-
bone expressing an integrated and general representation. In
practical implementation, to avoid task interference intro-
duced by such cross-task communication, we detach inputs
to all reconciliation layers from the computational graph to
cut off further gradient propagation.

3.3. Squeeze Stage

The previous Expansion Stage gives a concerted repre-
sentation provided by the expanded backbone uniting all
T sub-backbones of T tasks. However, it also introduces
an undesirable T times increase in the number of model
parameters and computational complexity. To maintain
performance while reducing the expanded parameters, we
present the Squeeze Stage. The final squeezed model re-
mains highly generalizable for downstream transfer while
sharing the same number of parameters with a single-task
sub-backbone.

In Squeeze Stage, given an expanded backbone, we
adopt distillation to consolidate the model. We employ the
FitNets [53] approach, but with multiple targets (hints) from
the expanded backbone as the student’s supervision. For-
mally, given multiple outputs from the expanded teacher in-
dexed by t ∈ {1, 2, ..., T}, we refer to F t as the output fea-
ture of task t, and F̂ as the feature of the student network.
We perform distillation between the student model and the
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Figure 3. Variants of X-Learner. (a) is the default form of X-Learner. (b) The expansion stage of X-Learner++ is supervised by
extra hints from single-task single-source pre-trained models. (c) X-Learnerr is a Squeeze-Expansion version. (d) X-Learnerp replace the
distillation with pruning in the squeeze stage. (e) We switch to a new reconciliation layer in X-Learnert. Differences between variants and
the default X-Learner are highlighted in red.

bunch of teacher outputs. Specifically, we project the single
student feature F̂ through a task-specific guidance layer Gt,
and expect the outcome to match the teacher’s version F t.
Therefore, our distillation loss Lsqueeze is simply the sum
over squared L2 losses of all teacher-student pairs:

Lsqueeze =

T∑
t=1

∥∥∥F t − Gt(F̂ )∥∥∥2
2

(3)

The guidance layer Gt is composed of a convolutional layer
and a normalization layer:

Gt(x) = Norm(Conv(x)). (4)

We adopt an 1 × 1 convolution which transforms the stu-
dent’s feature to have the same number of channels as the
teacher’s output. For the normalization function, we simply
choose Batch Normalization [28] as in [53].

3.4. Variants of X-Learner

X-Learner is a highly flexible multi-task pre-training
framework, and many variants can be designed from the
default setting. In this section, we describe several possi-
bilities, which are illustrated in Fig. 3. More detailed differ-
ences among those variants are listed in Fig. 4.

X-Learnerr. We notice that the number of parameters in
each individual model is first rising and then declining in
our default X-Learner. It is natural to also study the re-
versed order, i.e., Squeeze-Expansion. In the new squeeze

stage, we use T task-specific teachers trained with multiple
sources to distill T more light-weight sub-backbones. They
are then combined into one network with normal computa-
tional complexity via reconciliation layers in the following
expansion stage.

X-Learnert. We make a modification on the reconciliation
layers and let them take features from deeper layers of other
sub-backbones as input and fuse to low-level features of a
task. We also replace γa in cross-layer reconciliation layers
with γc which is composed of an up-sampling layer and a
convolutional layer.

X-Learnerp. We replace the distillation operation with un-
structured pruning in Squeeze Stage. It is another way to re-
duce computation consumption while maintaining the per-
formance of a network. We adopt a simple unstructured
pruning method referencing [78].

X-Learner++. Inspired by [36], in the Expansion Stage,
we add extra supervisions from single-task single-source
pre-trained model in the form of hints besides the original
supervision from labels of multiple data sources. This can
be viewed as adding a pre-distillation process with multiple
SSST teachers prior to training the expanded backbone.



Table 1. Datasets used for X-Learner pre-training. We grouped
them into manually defined image domains according to [44].

Dataset Task Domain Train Size
ImageNet [54] General CLS. Websearch 1.3M
Places365 [75] General CLS. Websearch 8.0M
iNat2021 [61] Fine-Grained CLS. Consumer 2.7M
CompCars [67] Fine-Grained CLS. Close-ups 120k
Tsinghua Dogs [79] Fine-Grained CLS. Close-ups 65k
COCO [39] General DET. Consumer 118k
Objects365 [56] General DET. Consumer 609k
WIDER FACE [68] Face DET. Websearch 13k
ADE20K [76] Semantic SEG. Consumer 20k
COCO-Stuff [6] Semantic SEG. Consumer 164k

Table 2. Comparison with supervised and self-supervised
methods on classification, detection and segmentation. * rep-
resents the model is not pre-trained with semantic segmentation.
We compare X-Learner to supervised pre-training, self-supervised
learning, and a simple hard-sharing multi-task learning baseline.
Relative gains are computed with respect to the ImageNet super-
vised baseline.

Method AVG Cls PASCAL Det PASCAL Seg
ImageNet [54] Supervised 74.4 81.5 75.7*
SimCLR [10] 74.6 82.9 74.1*
Hard-sharing 73.2 83.7 70.5*
X-Learner 77.1 (+2.7) 84.4 (+2.9) 77.1* (+1.4)
X-Learner++ 77.4 (+3.0) 84.8 (+3.3) 77.5* (+1.8)
X-Learner w/ seg 77.7 (+3.3) 84.3 (+2.8) 77.6 (+1.9)

4. Experiments
4.1. Pre-Training Settings

Pre-Training Sources (Datasets). Tab. 1 summarizes the
sources we use for experiments. Most of our experiments
are conducted in a base setting, where we pre-train mod-
els with 2 tasks: classification and object detection. We
use 3 sources for image classification: ImageNet [54],
iNat2021 [61] and Places365 [75] (Challenge version),
and 2 sources for object detection: COCO [39] and Ob-
jects365 [56]. We also consider two extended settings: 1)
to investigate the effect of more sources on X-Learner, we
add CompCars [67] as well as Tsinghua Dogs [79] as two
extra classification sources, and select WIDER FACE [68]
as a new object detection source; 2) we study the impact
of adding a new task, which is semantic segmentation, with
ADE20K [76] and COCO-Stuff [6] as its sources.

Implementation Details. We implement X-Learner and its
variants described in Sec. 3.4 using ResNet-50 [27] as the
basic backbone throughout our experiments unless other-
wise specified. The weights of reconciliation layers are ini-
tialized with [20]. We use SGD optimizer with a momentum
of 0.9 [60], 10−4 weight decay and a base learning rate of
0.2. We decay the learning rate three times by a multi-step
schedule with factors 0.5, 0.2 and 0.1 at 50%, 70% and 90%
of the total iterations respectively.

4.2. Downstream Task Settings

Classification. We select 10 datasets from the well-studied
evaluation suite introduced by [31], including general ob-
ject classification (CIFAR-10 [33], CIFAR-100 [33]); fine-
grained object classification (Food-101 [5], Stanford Cars
[32], FGVC-Aircraft [42], Oxford-IIIT Pets [48], Oxford
102 Flower [46], Caltech-101 [16]), and scene classifica-
tion (SUN397 [64]). We follow the linear probe evaluation
setting used in [49]. We use the average accuracy of 10 clas-
sification datasets (AVG Cls) to represent the overall perfor-
mance on the classification task. We train a logistic regres-
sion classifier using the L-BFGS optimizer, with a maxi-
mum of 1, 000 iterations. We search the value for the L2
regularization strength λ over a set which distributes evenly
over the range between 10−1 and 10−5. We use images of
resolution 224× 224 for both training and evaluation.

Detection. We fine-tune our pre-trained model on PASCAL
VOC07+12 (PASCAL Det) [15] for the detection task. We
use Faster-RCNN [51] architecture in our experiments and
run 24,000 iterations with a batch size of 16. We use SGD
as the optimizer and search the best learning rate between
0.001 and 0.05. Weight decay is set to 10−4, and momen-
tum is set to 0.9. Evaluation is performed on the PASCAL
VOC 2007 test set, with the shorter edges of images scaled
to 800 pixels.

Semantic Segmentation. We evaluate models on PAS-
CAL VOC 2012 (PASCAL Seg) [15]. We run 33,000 it-
erations with a batch size of 16. The architecture is based
on Deeplab v3 [9]. We use SGD as the optimizer with a
learning rate between 0.001 and 0.07. Weight decay is set
to 10−4, and momentum is set to 0.9. Images are scaled to
513× 513.

4.3. Main Results

Pre-Training Paradigm Comparison. Tab. 2 compares
our pre-training scheme X-Learner with supervised train-
ing and self-supervised learning (SimCLR [10]) on Im-
ageNet [54], as well as a simple hard-parameter-sharing
baseline (named as “Hard-sharing”) on our multi-task and
multi-source setting. We report performances on all three
types of downstream tasks. Under the base setting, X-
Learner uniformly outperforms all compared methods in
terms of all evaluated metrics, especially AVG Cls. We also
observe that the Hard-sharing model has better performance
than the ImageNet-supervised model on PASCAL Det, but
suffers a performance drop of 1.2% in AVG Cls. This sug-
gests that the hard-sharing model benefits from multi-task
pre-training with object detection sources included, but is
harmed by task interference. In contrast, our X-Learner
clearly overcomes the shortcoming and alleviates undesir-
able interference, leading to performance boosts on all con-
sidered tasks. Moreover, compared with training solely on



Experiment Sub-Backbone Expansion Squeeze Pre-Distillation Parameters
Hard-sharing ResNet-50 × × × →
X-Learner ResNet-50

√
D × ↗↘

X-Learnerr HalfResNet-50
√

D × ↘↗
X-Learnert ResNet-50

√
D × ↗↘

X-Learnerp ResNet-50
√

P × ↗↘
X-Learner++ ResNet-50

√
D

√
↗↘

X-Learner w/o Rec. ResNet-50 × D × ↘

SqueezeExpand

Expanded backbone

Expanded backbone

ExpandSqueeze

Figure 4. Differences among X-learner variants. We conduct different ablation study of X-Learner. Pre-distillation refers to applying
extra supervisions from single-task single-source pre-trained models as is introduced in X-Learner++. In the Squeeze column, we denote
distillation by D and pruning by P if there is a squeeze stage present in the pipeline. The change of the parameter can refer to the figure on
the right.

Table 3. Comparison on extended settings with extra pre-training sources. By adding sources in different tasks (marked in bold italic),
Hard-sharing suffers performance drops on both upstream and downstream tasks, while our X-Learner is stable across different settings,
benefiting from the proposed Expansion Stage.

Pre-train Transfer
Expriments Methods ImageNet iNat2021 Places Cars Dogs COCO Objects365 FACE AVG Cls PASCAL Det

Base Hard-sharing 75.0 75.3 53.0 – – 35.5 17.4 – 73.2 83.7
X-Learner 77.3 79.7 54.4 – – 39.9 22.2 – 77.1 84.4

+ Cls Sources Hard-sharing 73.7 73.6 52.3 98.5 85.3 35.4 17.6 – 77.5 83.1
X-Learner 77.3 77.9 54.4 98.4 86.9 40.5 22.6 – 80.6 84.3

+ Cls & Det Sources Hard-sharing 73.6 73.6 52.0 98.4 85.4 34.9 16.5 31.5 77.1 83.2
X-Learner 76.9 78.6 54.6 98.6 85.9 40.1 22.1 33.6 80.5 84.3

ImageNet which is already specialized for classification,
our approach still enjoys a 2.5% increase on AVG Cls. This
result demonstrates that our setting of learning with multi-
ple tasks simultaneously is beneficial for all involved pre-
training tasks, such as classification here.

In addition, our X-Learner++ mentioned in Sec. 3.4 fur-
ther enhances performance by means of its extra distilla-
tion process during sub-backbone training in the Expansion
Stage, and achieves the best performance on all three down-
stream tasks.

We also compare our X-Learner++ with the multi-task
self-training method MuST [19] in Tab. 4, For fair com-
parison, we fine-tune on the CIFAR-100 dataset instead of
applying our default linear probe setting, evaluate PASCAL
Det with pre-trained FPN [38], and set output stride to 8 in
segmentation.

Our model surpasses MuST on classification and detec-
tion tasks despite using ResNet-50 instead of the more ad-
vanced ResNet-152 applied by MuST. To better show the
effectiveness of our setting, we also conduct an experiment
with the ResNet-152 backbone. Tab. 4 shows the perfor-
mance of X-LearnerR152 as well as MuST on four differ-
ent tasks. We observe that our framework outperforms the
self-training method by significant margins on all evaluated
downstream tasks. Moreover, it is worth mentioning that

on NYU-Depth V2, our X-Learner, without any depth esti-
mation pre-training, surpasses MuST which is learned with
MiDaS, a mixture dataset with 10 depth-wise datasets. This
zero-shot result further demonstrates the strong generaliza-
tion capability of X-Learner.

We also compare our X-LearnerR152 with a stronger ver-
sion of MuST model pre-trained with JFT-300M, which is
much larger than our datasets. As our X-Learner achieves
89.7 and 88.6 in downstream classification and detection
tasks. This comparison proves that the dataset size is not an
important factor, and our design has its superiority.

Cross-Task Generalization and Scalability. In Tab. 2,
among methods that are not pre-trained on semantic seg-
mentation, our X-Learner++ has the highest result on PAS-
CAL Seg. This validates that our models produce more gen-
eralizable representations in terms of unseen tasks.

In addition to generalizability, our framework is also
highly scalable and can incorporate extra tasks or sources
effortlessly. As a demonstration, we add a semantic
segmentation task according to the extended setting with
ADE20K and COCO-Stuff. Results of “X-Learner w/ seg”
in Tab. 2 show improvement on PASCAL Seg by 0.5 mIoU
compared to the basic X-Learner. Classification perfor-
mance is also benefitted from the new task introduced,



Table 4. Comparison with self-training. PASCAL Seg is an unseen task for X-Learner++, which is marked with *. NYU-Depth V2 is
an unseen task for X-LearnerR152, which is marked with *.

Method Backbone Pre-training Settings CIFAR-100 [33] PASCAL Det [15] PASCAL Seg [15] NYU-Depth V2 [58]
MuST [19] ResNet-152 ImageNet + DET. + SEG. + DEP. 86.3 85.1 80.6 87.8
MuST [19] ResNet-152 JFT300M + DET. + SEG. + DEP. 88.3 87.9 82.9 89.5
X-Learner++ ResNet-50 ImageNet + DET. 87.0 (+0.7) 87.3 (+2.2) 78.8* (-1.8) 89.0 (+1.2)
X-LearnerR152 ResNet-152 ImageNet + OBJ365 + COCO 88.7 (+2.4) 88.5 (+3.4) 81.4 (+0.8) 91.2*(+3.4)
X-LearnerR152 ResNet-152 ImageNet + DET. + SEG. 89.7 (+3.4) 88.6 (+3.5) 82.6 (+2.0) 91.3*(+3.5)

Table 5. The effect of applying reconciliation layers in the Expand Stage. The reconciliation layer can significantly improve the
performance in multi-task learning.

AVG Cls PASCAL Det

X-Learner w/o Rec 74.8 83.9
X-Learner 77.1 84.4

demonstrating the effectiveness of our multi-task learning
approach.
Necessity of Reconciliation Layers. As shown in Tab. 5,
we train an X-Learner without reconciliation layer to study
the importance of the component. Compared to the default
setting, removing reconciliation layers leads to significant
performance drops at downstream transfer learning, espe-
cially on fine-grained datasets. We find that the feature
from detection sub-backbone contains more detail, and it
can be enhanced to a universal feature by the reconcilia-
tion layer. This phenomenon also verifies that reconcilia-
tion layers play a crucial role in coordinating multiple tasks
towards the common goal of general representation learn-
ing.

4.4. In-Depth Studies

4.4.1 Multi-Task and Multi-Source Pre-Training

Observation 1: Proper multi-task learning promotes collab-
oration instead of bringing interference. As is discussed in
Sec. 4.3, X-Learner not only resolves the task interference
issue encountered by the hard-sharing model, but also sur-
passes single-task pre-trained models such as the ImageNet
baseline in terms of downstream results. This shows that
with an appropriately designed learning scheme, multi-task
training is able to collaboratively enhance performances on
all pre-training tasks. This conclusion is again corroborated
by the results of X-Learner++ in Tab. 2. With a more elab-
orated design, performances on all tasks are again consis-
tently boosted.

Observation 2: Additional sources further improve multi-
task and multi-source representation learning if task con-
flicts are well-mitigated. We experiment on the extended
setting with extra classification and detection sources.
The added sources, such as CompCars [67] and WIDER
FACE [68], have data in domains very different from exist-

ing sources. Ideally, including sources of complementary
nature should help the overall multi-task and multi-source
learning, since information available for pre-training is en-
riched and is more likely to cover downstream domains.
However, this may also increase conflicts among tasks if
not dealt with properly. In Tab. 3, we can see that the over-
simplified hard-sharing baseline has considerably inferior
results at both upstream and downsteam if more sources
are added. In pre-training stage, there is slight decrease
after adding classification sources. This is due to the in-
crease in task conflict when introducing new data domains.
Nonetheless, we can find that additional sources becomes
beneficial to transfer learning tasks both in hard-sharing and
X-Learner. Compared to hard-sharing, X-Learner has mit-
igated such detrimental conflict to a certain extent with the
aid of our two-stage design. This suggests that when task
interference is properly alleviated, new data sources can be
fully utilized by the model to learn more diverse knowledge
and enhance the final representation.

4.4.2 Design of X-Learner Framework

Observation 3: Expansion-Squeeze is better than Squeeze-
Expansion. In Sec. 3.4, we have described the X-Learnerr
variant in which the order of the two stages within X-
Learner is reversed. Performing squeezing first would result
in smaller single-task sub-backbones with 1/T of the origi-
nal size. Since T = 2 in our base setting, we should get two
halved ResNet-50 models, corresponding to HalfResNet-50
in Fig. 4, which are to be joined in the further expansion
process. HalfResNet-50 is a sub-backbone with only 1/

√
2

of the original ResNet-50 channels. As shown in Tab. 6,
X-Learnerr has lower performance on most pre-training
tasks and all downstream tasks than the default X-Learner.
This finding is reasonable since by intuition, shrinking sub-
backbones first is likely to cause unrecoverable information



Table 6. Comparison of various X-Learner variants. Pre-training tasks and downstream tasks are evaluated on X-Learner variants. Our
framework always performs better than Hard-sharing.

Pre-train Transfer
Method ImageNet iNat2021 Places COCO Objects365 AVG Cls PASCAL Det
Hard-sharing 75.0 75.3 53.0 35.5 17.4 73.2 83.7
X-Learner 77.3 79.7 54.4 39.9 22.2 77.1 84.4
X-Learnerr 73.9 76.6 52.5 41.1 21.7 73.9 84.1
X-Learnert 76.3 79.9 53.3 42.5 22.0 74.5 83.5
X-Learnerp 76.1 78.6 53.5 42.4 23.4 77.2 83.1
X-Learner++ 77.2 80.4 54.6 40.1 22.4 77.4 84.8

loss. It also validates our choice of Expansion-Squeeze for
the default setup. Note that X-Learnerr is still better than
the hard-sharing model, which again highlights the impor-
tance of a two-stage paradigm to mitigate task interference.

Observation 4: Reconciliation layers should receive infor-
mation from lower levels. We also evaluate the alternative
design of X-Learnert, where reconciliation layers take fea-
tures from deeper layers instead of shallower ones. Exper-
iments in Tab. 6 show that the modified and original setups
are both competitive at upstream pre-training. However, X-
Learnert is not as good as X-Learner in terms of down-
stream tasks. In conclusion, low-level features are more
suitable to serve as complementary information among het-
erogeneous tasks.

Observation 5: Pruning may replace distillation in Squeeze
Stage. In Tab. 6, X-Learnerp achieves results similar to
those of X-Learner. This shows that pruning is also a valid
choice for squeezing the expanded backbone, and thus is
able to substitute distillation in Squeeze Stage.

5. Discussion and Conclusion
In this paper, we propose a flexible multi-task and multi-

source pre-training paradigm called X-Learner, the general
framework for representation learning by supervised multi-
task learning. Heterogeneous tasks and diverse sources can
be jointly learned with the help of the Expansion Stage and
Squeeze Stage. We validate that X-Learner mitigates the
well-known task interference problem and learns unified
general representation that generalizes well to multiple seen
and unseen tasks. We also show that X-Learner is superior
to traditional supervised and self-supervised learning meth-
ods, as well as self-training approaches. In addition, We
also demonstrate that our framework is highly flexible and
additional tasks or sources can be integrated in a “plug-and-
play” manner. Moreover, we offer several insightful obser-
vations through our experiments. One possible limitation is
that the representation capability of our current pre-training
is confined by the scale of publicly available datasets. It
is possible to study with larger sources and more tasks in
our framework. We hope this work will encourage further

researches towards creating general representations by per-
forming multi-task and multi-source learning at scale.
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