Skip to main content

RigNet: Repetitive Image Guided Network for Depth Completion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13687))

Included in the following conference series:

  • 3552 Accesses

Abstract

Depth completion deals with the problem of recovering dense depth maps from sparse ones, where color images are often used to facilitate this task. Recent approaches mainly focus on image guided learning frameworks to predict dense depth. However, blurry guidance in the image and unclear structure in the depth still impede the performance of the image guided frameworks. To tackle these problems, we explore a repetitive design in our image guided network to gradually and sufficiently recover depth values. Specifically, the repetition is embodied in both the image guidance branch and depth generation branch. In the former branch, we design a repetitive hourglass network to extract discriminative image features of complex environments, which can provide powerful contextual instruction for depth prediction. In the latter branch, we introduce a repetitive guidance module based on dynamic convolution, in which an efficient convolution factorization is proposed to simultaneously reduce its complexity and progressively model high-frequency structures. Extensive experiments show that our method achieves superior or competitive results on KITTI benchmark and NYUv2 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsychology & Behavior 11(1), 9–15 (2008)

    Article  Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In: CVPR. pp. 6154–6162 (2018)

    Google Scholar 

  3. Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2d–3d representations for depth completion. In: ICCV. pp. 10023–10032 (2019)

    Google Scholar 

  4. Cheng, X., Wang, P., Guan, C., Yang, R.: Cspn++: Learning context and resource aware convolutional spatial propagation networks for depth completion. In: AAAI. pp. 10615–10622 (2020)

    Google Scholar 

  5. Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propagation network. In: ECCV, pp. 103–119 (2018)

    Google Scholar 

  6. Chodosh, N., Wang, C., Lucey, S.: Deep convolutional compressed sensing for lidar depth completion, In: ACCV. pp. 499–513 (2018)

    Google Scholar 

  7. Cui, Z., Heng, L., Yeo, Y.C., Geiger, A., Pollefeys, M., Sattler, T.: Real-time dense mapping for self-driving vehicles using fisheye cameras. In: ICR, pp. 6087–6093 (2019)

    Google Scholar 

  8. Dey, A., Jarvis, G., Sandor, C., Reitmayr, G.: Tablet versus phone: depth perception in handheld augmented reality. In: ISMAR, pp. 187–196 (2012)

    Google Scholar 

  9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving simulator. In: CoRL, pp. 1–16. PMLR (2017)

    Google Scholar 

  10. Eldesokey, A., Felsberg, M., Khan, F.S.: Confidence propagation through CNNs for guided sparse depth regression. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2423–2436 (2020)

    Article  Google Scholar 

  11. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR, pp. 4340–4349 (2016)

    Google Scholar 

  12. Gao, R., Chen, C., Al-Halah, Z., Schissler, C., Grauman, K.: VisualEchoes: spatial image representation learning through echolocation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 658–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_38

    Chapter  Google Scholar 

  13. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR, pp. 7036–7045 (2019)

    Google Scholar 

  14. Häne, C., et al.: 3d visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27 (2017)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  17. Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: ICRA (2021)

    Google Scholar 

  18. Huang, Y.K., Wu, T.H., Liu, Y.C., Hsu, W.H.: Indoor depth completion with boundary consistency and self-attention. In: ICCV Workshops (2019)

    Google Scholar 

  19. Imran, S., Liu, X., Morris, D.: Depth completion with twin surface extrapolation at occlusion boundaries. In: CVPR, pp. 2583–2592 (2021)

    Google Scholar 

  20. Imran, S., Long, Y., Liu, X., Morris, D.: Depth coefficients for depth completion. In: CVPR, pp. 12438–12447. IEEE (2019)

    Google Scholar 

  21. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456. PMLR (2015)

    Google Scholar 

  22. Jaritz, M., De Charette, R., Wirbel, E., Perrotton, X., Nashashibi, F.: Sparse and dense data with CNNs: depth completion and semantic segmentation. In: 3DV, pp. 52–60 (2018)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Computer Ence (2014)

    Google Scholar 

  24. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast depth completion on the CPU. In: CRV, pp. 16–22 (2018)

    Google Scholar 

  25. Lee, B.U., Lee, K., Kweon, I.S.: Depth completion using plane-residual representation. In: CVPR, pp. 13916–13925 (2021)

    Google Scholar 

  26. Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C., et al.: A multi-scale guided cascade hourglass network for depth completion. In: WACV, pp. 32–40 (2020)

    Google Scholar 

  27. Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR, pp. 510–519 (2019)

    Google Scholar 

  28. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)

    Google Scholar 

  29. Liu, L., et al.: FCFR-Net: feature fusion based coarse-to-fine residual learning for depth completion. In: AAAI, vol. 35, pp. 2136–2144 (2021)

    Google Scholar 

  30. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)

    Google Scholar 

  31. Liu, Y., et al.: CBNet: a novel composite backbone network architecture for object detection. In: AAAI, vol. 34, pp. 11653–11660 (2020)

    Google Scholar 

  32. Lu, K., Barnes, N., Anwar, S., Zheng, L.: From depth what can you see? depth completion via auxiliary image reconstruction. In: CVPR, pp. 11306–11315 (2020)

    Google Scholar 

  33. Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: self-supervised depth completion from lidar and monocular camera. In: ICRA (2019)

    Google Scholar 

  34. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: ICRA, pp. 4796–4803. IEEE (2018)

    Google Scholar 

  35. Parida, K.K., Srivastava, S., Sharma, G.: Beyond image to depth: improving depth prediction using echoes. In: CVPR, pp. 8268–8277 (2021)

    Google Scholar 

  36. Park, J., Joo, K., Hu, Z., Liu, C.K., Kweon, I.S.: Non-local spatial propagation network for depth completion. In: ECCV (2020)

    Google Scholar 

  37. Qiao, S., Chen, L.C., Yuille, A.: Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. In: CVPR, pp. 10213–10224 (2021)

    Google Scholar 

  38. Qiu, J., et al.: DeepLiDAR: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: CVPR, pp. 3313–3322 (2019)

    Google Scholar 

  39. Qu, C., Liu, W., Taylor, C.J.: Bayesian deep basis fitting for depth completion with uncertainty. In: ICCV, pp. 16147–16157 (2021)

    Google Scholar 

  40. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NeurIPS 28, 91–99 (2015)

    Google Scholar 

  41. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  42. Shen, Z., Lin, C., Liao, K., Nie, L., Zheng, Z., Zhao, Y.: PanoFormer: panorama transformer for indoor 360 depth estimation. arXiv e-prints pp. arXiv-2203 (2022)

    Google Scholar 

  43. Shen, Z., Lin, C., Nie, L., Liao, K., Zhao, Y.: Distortion-tolerant monocular depth estimation on omnidirectional images using dual-cubemap. In: ICME, pp. 1–6. IEEE (2021)

    Google Scholar 

  44. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  45. Song, X., et al.: Channel attention based iterative residual learning for depth map super-resolution. In: CVPR, pp. 5631–5640 (2020)

    Google Scholar 

  46. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: CVPR, pp. 10781–10790 (2020)

    Google Scholar 

  47. Tang, J., Tian, F.P., Feng, W., Li, J., Tan, P.: Learning guided convolutional network for depth completion. IEEE Trans. Image Process. 30, 1116–1129 (2020)

    Article  Google Scholar 

  48. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV, pp. 11–20 (2017)

    Google Scholar 

  49. Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and noisy lidar completion with RGB guidance and uncertainty. In: MVA, pp. 1–6 (2019)

    Google Scholar 

  50. Wang, K., et al.: Regularizing nighttime weirdness: efficient self-supervised monocular depth estimation in the dark. In: ICCV, pp. 16055–16064 (2021)

    Google Scholar 

  51. Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse lidar data with depth-normal constraints. In: ICCV, pp. 2811–2820 (2019)

    Google Scholar 

  52. Xu, Z., Yin, H., Yao, J.: Deformable spatial propagation networks for depth completion. In: ICIP, pp. 913–917. IEEE (2020)

    Google Scholar 

  53. Yang, Y., Wong, A., Soatto, S.: Dense depth posterior (DDP) from single image and sparse range. In: CVPR, pp. 3353–3362 (2020)

    Google Scholar 

  54. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  55. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR, pp. 7151–7160 (2018)

    Google Scholar 

  56. Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-d image. In: CVPR, pp. 175–185 (2018)

    Google Scholar 

  57. Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: CVPR, pp. 4106–4115 (2019)

    Google Scholar 

  58. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  59. Zhao, S., Gong, M., Fu, H., Tao, D.: Adaptive context-aware multi-modal network for depth completion. IEEE Trans. Image Process. 30, 5264–5276 (2021)

    Article  Google Scholar 

  60. Zhu, Y., Dong, W., Li, L., Wu, J., Li, X., Shi, G.: Robust depth completion with uncertainty-driven loss functions. arXiv preprint arXiv:2112.07895 (2021)

Download references

Acknowledgement

The authors would like to thank reviewers for their detailed comments and instructive suggestions. This work was supported by the National Science Fund of China under Grant Nos. U1713208, 62072242 and Postdoctoral Innovative Talent Support Program of China under Grant BX20200168, 2020M681608. Note that the PCA Lab is associated with, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, and Jiangsu Key Lab of Image and Video Understanding for Social Security, Nanjing University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Jian Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3548 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Z., Wang, K., Li, X., Zhang, Z., Li, J., Yang, J. (2022). RigNet: Repetitive Image Guided Network for Depth Completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19812-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19811-3

  • Online ISBN: 978-3-031-19812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics