Abstract
Depth completion deals with the problem of recovering dense depth maps from sparse ones, where color images are often used to facilitate this task. Recent approaches mainly focus on image guided learning frameworks to predict dense depth. However, blurry guidance in the image and unclear structure in the depth still impede the performance of the image guided frameworks. To tackle these problems, we explore a repetitive design in our image guided network to gradually and sufficiently recover depth values. Specifically, the repetition is embodied in both the image guidance branch and depth generation branch. In the former branch, we design a repetitive hourglass network to extract discriminative image features of complex environments, which can provide powerful contextual instruction for depth prediction. In the latter branch, we introduce a repetitive guidance module based on dynamic convolution, in which an efficient convolution factorization is proposed to simultaneously reduce its complexity and progressively model high-frequency structures. Extensive experiments show that our method achieves superior or competitive results on KITTI benchmark and NYUv2 dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsychology & Behavior 11(1), 9–15 (2008)
Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection. In: CVPR. pp. 6154–6162 (2018)
Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2d–3d representations for depth completion. In: ICCV. pp. 10023–10032 (2019)
Cheng, X., Wang, P., Guan, C., Yang, R.: Cspn++: Learning context and resource aware convolutional spatial propagation networks for depth completion. In: AAAI. pp. 10615–10622 (2020)
Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propagation network. In: ECCV, pp. 103–119 (2018)
Chodosh, N., Wang, C., Lucey, S.: Deep convolutional compressed sensing for lidar depth completion, In: ACCV. pp. 499–513 (2018)
Cui, Z., Heng, L., Yeo, Y.C., Geiger, A., Pollefeys, M., Sattler, T.: Real-time dense mapping for self-driving vehicles using fisheye cameras. In: ICR, pp. 6087–6093 (2019)
Dey, A., Jarvis, G., Sandor, C., Reitmayr, G.: Tablet versus phone: depth perception in handheld augmented reality. In: ISMAR, pp. 187–196 (2012)
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: an open urban driving simulator. In: CoRL, pp. 1–16. PMLR (2017)
Eldesokey, A., Felsberg, M., Khan, F.S.: Confidence propagation through CNNs for guided sparse depth regression. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2423–2436 (2020)
Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR, pp. 4340–4349 (2016)
Gao, R., Chen, C., Al-Halah, Z., Schissler, C., Grauman, K.: VisualEchoes: spatial image representation learning through echolocation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 658–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_38
Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR, pp. 7036–7045 (2019)
Häne, C., et al.: 3d visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: ICRA (2021)
Huang, Y.K., Wu, T.H., Liu, Y.C., Hsu, W.H.: Indoor depth completion with boundary consistency and self-attention. In: ICCV Workshops (2019)
Imran, S., Liu, X., Morris, D.: Depth completion with twin surface extrapolation at occlusion boundaries. In: CVPR, pp. 2583–2592 (2021)
Imran, S., Long, Y., Liu, X., Morris, D.: Depth coefficients for depth completion. In: CVPR, pp. 12438–12447. IEEE (2019)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456. PMLR (2015)
Jaritz, M., De Charette, R., Wirbel, E., Perrotton, X., Nashashibi, F.: Sparse and dense data with CNNs: depth completion and semantic segmentation. In: 3DV, pp. 52–60 (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Computer Ence (2014)
Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast depth completion on the CPU. In: CRV, pp. 16–22 (2018)
Lee, B.U., Lee, K., Kweon, I.S.: Depth completion using plane-residual representation. In: CVPR, pp. 13916–13925 (2021)
Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C., et al.: A multi-scale guided cascade hourglass network for depth completion. In: WACV, pp. 32–40 (2020)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR, pp. 510–519 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR, pp. 2117–2125 (2017)
Liu, L., et al.: FCFR-Net: feature fusion based coarse-to-fine residual learning for depth completion. In: AAAI, vol. 35, pp. 2136–2144 (2021)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)
Liu, Y., et al.: CBNet: a novel composite backbone network architecture for object detection. In: AAAI, vol. 34, pp. 11653–11660 (2020)
Lu, K., Barnes, N., Anwar, S., Zheng, L.: From depth what can you see? depth completion via auxiliary image reconstruction. In: CVPR, pp. 11306–11315 (2020)
Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: self-supervised depth completion from lidar and monocular camera. In: ICRA (2019)
Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: ICRA, pp. 4796–4803. IEEE (2018)
Parida, K.K., Srivastava, S., Sharma, G.: Beyond image to depth: improving depth prediction using echoes. In: CVPR, pp. 8268–8277 (2021)
Park, J., Joo, K., Hu, Z., Liu, C.K., Kweon, I.S.: Non-local spatial propagation network for depth completion. In: ECCV (2020)
Qiao, S., Chen, L.C., Yuille, A.: Detectors: detecting objects with recursive feature pyramid and switchable atrous convolution. In: CVPR, pp. 10213–10224 (2021)
Qiu, J., et al.: DeepLiDAR: deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In: CVPR, pp. 3313–3322 (2019)
Qu, C., Liu, W., Taylor, C.J.: Bayesian deep basis fitting for depth completion with uncertainty. In: ICCV, pp. 16147–16157 (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NeurIPS 28, 91–99 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shen, Z., Lin, C., Liao, K., Nie, L., Zheng, Z., Zhao, Y.: PanoFormer: panorama transformer for indoor 360 depth estimation. arXiv e-prints pp. arXiv-2203 (2022)
Shen, Z., Lin, C., Nie, L., Liao, K., Zhao, Y.: Distortion-tolerant monocular depth estimation on omnidirectional images using dual-cubemap. In: ICME, pp. 1–6. IEEE (2021)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Song, X., et al.: Channel attention based iterative residual learning for depth map super-resolution. In: CVPR, pp. 5631–5640 (2020)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: CVPR, pp. 10781–10790 (2020)
Tang, J., Tian, F.P., Feng, W., Li, J., Tan, P.: Learning guided convolutional network for depth completion. IEEE Trans. Image Process. 30, 1116–1129 (2020)
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV, pp. 11–20 (2017)
Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and noisy lidar completion with RGB guidance and uncertainty. In: MVA, pp. 1–6 (2019)
Wang, K., et al.: Regularizing nighttime weirdness: efficient self-supervised monocular depth estimation in the dark. In: ICCV, pp. 16055–16064 (2021)
Xu, Y., Zhu, X., Shi, J., Zhang, G., Bao, H., Li, H.: Depth completion from sparse lidar data with depth-normal constraints. In: ICCV, pp. 2811–2820 (2019)
Xu, Z., Yin, H., Yao, J.: Deformable spatial propagation networks for depth completion. In: ICIP, pp. 913–917. IEEE (2020)
Yang, Y., Wong, A., Soatto, S.: Dense depth posterior (DDP) from single image and sparse range. In: CVPR, pp. 3353–3362 (2020)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR, pp. 7151–7160 (2018)
Zhang, Y., Funkhouser, T.: Deep depth completion of a single RGB-d image. In: CVPR, pp. 175–185 (2018)
Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: CVPR, pp. 4106–4115 (2019)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)
Zhao, S., Gong, M., Fu, H., Tao, D.: Adaptive context-aware multi-modal network for depth completion. IEEE Trans. Image Process. 30, 5264–5276 (2021)
Zhu, Y., Dong, W., Li, L., Wu, J., Li, X., Shi, G.: Robust depth completion with uncertainty-driven loss functions. arXiv preprint arXiv:2112.07895 (2021)
Acknowledgement
The authors would like to thank reviewers for their detailed comments and instructive suggestions. This work was supported by the National Science Fund of China under Grant Nos. U1713208, 62072242 and Postdoctoral Innovative Talent Support Program of China under Grant BX20200168, 2020M681608. Note that the PCA Lab is associated with, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, and Jiangsu Key Lab of Image and Video Understanding for Social Security, Nanjing University of Science and Technology.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, Z., Wang, K., Li, X., Zhang, Z., Li, J., Yang, J. (2022). RigNet: Repetitive Image Guided Network for Depth Completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-19812-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19811-3
Online ISBN: 978-3-031-19812-0
eBook Packages: Computer ScienceComputer Science (R0)