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Abstract. Depth completion deals with the problem of recovering dense
depth maps from sparse ones, where color images are often used to facili-
tate this task. Recent approaches mainly focus on image guided learning
frameworks to predict dense depth. However, blurry guidance in the im-
age and unclear structure in the depth still impede the performance of the
image guided frameworks. To tackle these problems, we explore a repet-
itive design in our image guided network to gradually and sufficiently
recover depth values. Specifically, the repetition is embodied in both
the image guidance branch and depth generation branch. In the former
branch, we design a repetitive hourglass network to extract discrimina-
tive image features of complex environments, which can provide powerful
contextual instruction for depth prediction. In the latter branch, we in-
troduce a repetitive guidance module based on dynamic convolution, in
which an efficient convolution factorization is proposed to simultaneously
reduce its complexity and progressively model high-frequency structures.
Extensive experiments show that our method achieves superior or com-
petitive results on KITTI benchmark and NYUv2 dataset.
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1 Introduction

Depth completion, the technique of converting sparse depth measurements to
dense ones, has a variety of applications in the computer vision field, such as au-
tonomous driving [14,7,50], augmented reality [8,45], virtual reality [1], and 3D
scene reconstruction [57,36,43,42]. The success of these applications heavily de-
pends on reliable depth predictions. Recently, multi-modal information from var-
ious sensors is involved to help generate dependable depth results, such as color
images [33,3], surface normals [57,38], confidence maps [10,49], and even binaural
echoes [12,35]. Particularly, the latest image guided methods [59,29,17,47] prin-
cipally concentrate on using color images to guide the recovery of dense depth
maps, achieving outstanding performance. However, due to the challenging envi-
ronments and limited depth measurements, it’s difficult for existing image guided
methods to produce clear image guidance and structure-detailed depth features
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Fig. 1. To obtain dense depth Prediction, most existing image guided methods em-
ploy tandem models [33,4,36] (a) or parallel models [59,47,29,17] (b,c) with various
inputs (e.g., Boundary/Confidence/Normal/RGB-D), whilst we propose the repeti-
tive mechanism (d), aiming at providing gradually refined image/depth Guidance.

(see Figs. 2 and 6). To deal with these issues, in this paper we develop a repetitive
design in both the image guidance branch and depth generation branch.

In the image guidance branch: Existing image guided methods are not suf-
ficient to produce very precise details to provide perspicuous image guidance,
which limits the content-complete depth recovery. For example, the tandem mod-
els (Fig. 1(a)) tend to only utilize the final layer features of a hourglass unit.
The parallel models conduct scarce interaction between multiple hourglass units
(Fig. 1(b)), or refer to image guidance encoded only by single hourglass unit
(Fig. 1(c)). Different from them, as shown in Fig. 1(d), we present a vertically
repetitive hourglass network to make good use of RGB features in multi-scale
layers, which contain image semantics with much clearer and richer contexts.

In the depth generation branch: It is known that gradients near bound-
aries usually have large mutations, which increase the difficulty of recovering
structure-detailed depth for convolution [48]. As evidenced in plenty of methods
[18,10,36], the depth values are usually hard to be predicted especially around
the region with unclear boundaries. To moderate this issue, in this paper we
propose a repetitive guidance module based on dynamic convolution [47]. It
first extracts the high-frequency components by channel-wise and cross-channel
convolution factorization, and then repeatedly stacks the guidance unit to pro-
gressively produce refined depth. We also design an adaptive fusion mechanism
to effectively obtain better depth representations by aggregating depth features
of each repetitive unit. However, an obvious drawback of the dynamic convo-
lution is the large GPU memory consumption, especially under the case of our
repetitive structure. Hence, we further introduce an efficient module to largely
reduce the memory cost but maintain the accuracy.

Benefiting from the repetitive strategy with gradually refined image/depth
representations, our method performs better than others, as shown in Figs. 4, 5
and 6, and reported in Tables 3, 4, 5 and 6. In short, our contributions are:
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– We propose the effective but lightweight repetitive hourglass network, which
can extract legible image features of challenging environments to provide
clearer guidance for depth recovery.

– We present the repetitive guidance module based on dynamic convolution,
including an adaptive fusion mechanism and an efficient guidance algorithm,
which can gradually learn precise depth representations.

– Extensive experimental results demonstrate the effectiveness of our method,
which achieves outstanding performances on three datasets.

2 Related Work

Depth only approaches. For the first time in 2017, the work [48] proposes
sparsity invariant CNNs to deal with sparse depth. Since then, lots of depth
completion works [48,24,6,22,10,33,49] input depth without using color image.
Distinctively, Lu et al. [32] take sparse depth as the only input with color image
being auxiliary supervision when training. However, single-modal based methods
are limited without other reference information. As technology quickly develops,
plenty of multi-modal information is available, e.g., surface normal and optic
flow images, which can significantly facilitate the depth completion task.
Image guided methods. Existing image guided depth completion methods can
be roughly divided into two patterns. One pattern is that various maps are to-
gether input into tandem hourglass networks [33,5,3,4,36,52]. For example, S2D
[33] directly feeds the concatenation into a simple Unet [41]. CSPN [5] studies
the affinity matrix to refine coarse depth maps with spatial propagation network
(SPN). CSPN++ [4] further improves its effectiveness and efficiency by learning
adaptive convolutional kernel sizes and the number of iterations for propagation.
As an extension, NLSPN [36] presents non-local SPN which focuses on relevant
non-local neighbors during propagation. Another pattern is using multiple inde-
pendent branches to model different sensor information and then fuse them at
multi-scale stages [49,53,47,26,29,17]. For example, PENet [17] employs feature
addition to guide depth learning at different stages. ACMNet [59] chooses graph
propagation to capture the observed spatial contexts. GuideNet [47] seeks to pre-
dict dynamic kernel weights from the guided image and then adaptively extract
the depth features. However, these methods still cannot provide very sufficient
semantic guidance for the specific depth completion task.
Repetitive learning models. To extract more accurate and abundant fea-
ture representations, many approaches [40,2,31,37] propose to repeatedly stack
similar components. For example, PANet [30] adds an extra bottom-up path
aggregation which is similar with its former top-down feature pyramid network
(FPN). NAS-FPN [13] and BiFPN [46] conduct repetitive blocks to sufficiently
encode discriminative image semantics for object detection. FCFRNet [29] ar-
gues that the feature extraction in one-stage frameworks is insufficient, and thus
proposes a two-stage model, which can be regarded as a special case of the
repetitive design. On this basis, PENet [17] further improves its performance by
utilizing confidence maps and varietal CSPN++. Different from these methods,
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Fig. 2. Overview of our repetitive image guided network, which contains an image
guidance branch and a depth generation branch. The former consists of a repetitive
hourglass network (RHN) and the latter has the similar structure as RHN1. In the depth
branch, we perform our novel repetitive guidance module (RG, elaborated in Fig. 3) to
refine depth. In addition, an efficient guidance algorithm (EG) and an adaptive fusion
mechanism (AF) are proposed to further improve the performance of the module.

in our image branch we first conduct repetitive CNNs units to produce clearer
guidance in multi-scale layers. Then in our depth branch we perform repetitive
guidance module to generate structure-detailed depth.

3 Repetitive Design

In this section, we first introduce our repetitive hourglass network (RHN), then
elaborate the proposed repetitive guidance module (RG), including an efficient
guidance algorithm (EG) and an adaptive fusion mechanism (AF).

3.1 Repetitive Hourglass Network

For autonomous driving in challenging environments, it is important to under-
stand the semantics of color images in view of the sparse depth measurement.
The problem of blurry image guidance can be mitigated by a powerful feature
extractor, which can obtain context-clear semantics. In this paper we present our
repetitive hourglass network shown in Fig. 2. RHNi is a symmetrical hourglass
unit like Unet. The original color image is first encoded by a 5×5 convolution and
then input into RHN1. Next, we repeatedly utilize the similar but lightweight
unit, each layer of which consists of two convolutions, to gradually extract high-
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Fig. 3. Our repetitive guidance (RG) implemented by an efficient guidance algorithm
(EG) and an adaptive fusion mechanism (AF). k refers to the repetitive number.

level semantics. In the encoder of RHNi, Eij takes Ei(j−1) and D(i−1)j as input.
In the decoder of RHNi, Dij inputs Eij and Di(j+1). When i > 1, the process is

Eij =

{
Conv

(
D(i−1)j

)
, j = 1,

Conv
(
Ei(j−1)

)
+D(i−1)j , 1 < j ≤ 5,

Dij =

{
Conv (Ei5) , j = 5,

Deconv
(
Di(j+1)

)
+ Eij , 1 ≤ j < 5,

(1)

where Deconv (·) denotes deconvolution function, and E1j = Conv(E1(j−1)).

3.2 Repetitive Guidance Module

Depth in challenging environments is not only extremely sparse but also diverse.
Most of the existing methods suffer from unclear structures, especially near the
object boundaries. Since gradual refinement is proven effective [4,36,52] to tackle
this issue, we propose our repetitive guidance module to progressively generate
dense and structure-detailed depth maps. As illustrated in Fig. 2, our depth
generation branch has the same architecture as RHN1. Given the sparse depth
input and color image guidance features Dij in the decoder of the last RHN,
our depth branch generates final dense predictions. At the stage of the depth
branch’s encoder, our repetitive guidance module (left of Fig. 3) takesDij and e1j
as input and employs the efficient guidance algorithm (in Sec. 3.2) to produce
refined depth djk step by step. Then we fuse the refined djk by our adaptive
fusion mechanism (in Sec. 3.2), obtaining the depth dj ,

dj = RG (Dij , e1j) , (2)

where RG (·) refers to the repetitve guidance function.

Efficient Guidance Algorithm Suppose the size of inputs Dij and e1j are
both C×H×W . It is easy to figure out the complexity of the dynamic convolu-
tion is O(C×C×R2×H×W ), which generates spatial-variant kernels according
to color image features. R2 is the size of the filter kernel window. In fact, C, H,
and W are usually very large, it’s thus necessary to reduce the complexity of
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MEG

MDC
= C×H×W+C×C

C×C×R2×H×W = H×W+C
C×H×W×R2

MEG

MCF
= C×H×W+C×C

C×R2×H×W+C×C = H×W+C
C+H×W×R2

Table 1. Theoretical analysis on GPU
memory consumption.

Method DC CF EG

Memory (GB) 42.75 0.334 0.037
Times (-/EG) 1155 9 1

Table 2. Numerical analysis on GPU
memory consumption.

the dynamic convolution. GuideNet [47] proposes channel-wise and cross-channel
convolution factorization, whose complexity is O(C × R2 × H × W + C × C).
However, our repetitive guidance module employs the convolution factorization
many times, where the channel-wise process still needs massive GPU memory
consumption, which is O(C × R2 × H × W ). As a result, inspired by SENet
[16] that captures high-frequency response with channel-wise differentiable op-
erations, we design an efficient guidance unit to simultaneously reduce the com-
plexity of the channel-wise convolution and encode high-frequency components,
which is shown in the top right of Fig. 3. Specifically, we first concatenate the
image and depth inputs and then conduct a 3× 3 convolution. Next, we employ
the global average pooling function to generate a C × 1× 1 feature. At last, we
perform pixel-wise dot between the feature and the depth input. The complexity
of our channel-wise convolution is only O(C ×H ×W ), reduced to 1/R2 . The
process is defined as

djk =

{
EG (Dij , e1j) , k = 1,

EG (Conv (Dij) , dk−1) , k > 1,
(3)

where EG (·) represents the efficient guidance function.
Suppose the memory consumptions of the common dynamic convolution,

convolution factorization, and our EG are MDC , MCF , and MEG, respectively.
Table 1 shows the theoretical analysis of GPU memory consumption ratio.

Under the setting of the second (4 in total) fusion stage in our depth generation
branch, using 4-byte floating precision and taking C = 128, H = 128, W = 608,
and R = 3, as shown in Table 2, the GPU memory of EG is reduced from
42.75GB to 0.037GB compared with the common dynamic convolution, nearly
1155 times lower in one fusion stage. Compared to the convolution factorization
in GuideNet [47], the memory of EG is reduced from 0.334GB to 0.037GB, nearly
9 times lower. Therefore, we can conduct our repetitive strategy easily without
worrying much about GPU memory consumption.

Adaptive Fusion Mechanism Since many coarse depth features (dj1, · · · , djk)
are available in our repetitive guidance module, it comes naturally to jointly
utilize them to generate refined depth maps, which has been proved effective
in various related methods [58,28,4,45,36,17]. Inspired by the selective kernel
convolution in SKNet [27], we propose the adaptive fusion mechanism to refine
depth, which is illustrated in the bottom right of Fig. 3. Specifically, given inputs
(dj1, · · · , djk), we first concatenate them and then perform a 3× 3 convolution.
Next, the global average pooling is employed to produce a C×1×1 feature map.
Then another 3 × 3 convolution and a softmax function are applied, obtaining
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(α1, · · · , αk),

αk = Soft (Conv (GAP (Conv (dj1|| · · · ||djk)))) , (4)

where Soft (·) and || refer to softmax function and concatenation. GAP (·) rep-
resents the global average pooling operation. Finally, we fuse the k coarse depth
maps using αk to produce the output dj ,

dj =
∑k

n=1
αndjn. (5)

The Eqs. 4 and 5 can be denoted as

dj = AF (dj1, dj2, · · · , djk) , (6)

where AF (·) represents the adaptive fusion function.

4 RigNet

In this section, we describe the network architecture and the loss function for
training. The proposed RigNet mainly consists of two parts: (1) an image guid-
ance branch for the generation of hierarchical and clear semantics based on the
repetitive hourglass network, and (2) a depth generation branch for structure-
detailed depth predictions based on the novel repetitive guidance module with
an efficient guidance algorithm and an adaptive fusion mechanism.

4.1 Network Architecture

Fig. 2 shows the overview of our network. In our image guidance branch, the
RHN1 encoder-decoder unit is built upon residual networks [15]. In addition, we
adopt the common connection strategy [41,3] to simultaneously utilize low-level
and high-level features. RHNi (i > 1) has the similar but lightweight architecture
with RHN1, which is used to extract clearer image guidance semantics [54].

The depth generation branch has the same structure as RHN1. In this branch,
we perform repetitive guidance module based on dynamic convolution to gradu-
ally produce structure-detailed depth features at multiple stages, which is shown
in Fig. 3 and described in Sec. 3.2.

4.2 Loss Function

During training, we adopt the mean squared error (MSE) to compute the loss,
which is defined as

L =
1

m

∑
q∈Qv

∥GTq − Pq∥2, (7)

where GT and P refer to ground truth depth and predicted depth respectively.
Qv represents the set of valid pixels in GT , m is the number of the valid pixels.
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5 Experiments

In this section, we first introduce the related datasets, metrics, and implemen-
tation details. Then, we carry out extensive experiments to evaluate the perfor-
mance of our method against other state-of-the-art approaches. Finally, a number
of ablation studies are employed to verify the effectiveness of our method.

5.1 Datasets and Metrics

KITTI Depth Completion Dataset [48] is a large autonomous driving real-
world benchmark from a driving vehicle. It consists of 86,898 ground truth an-
notations with aligned sparse LiDAR maps and color images for training, 7,000
frames for validation, and another 1,000 frames for testing. The official 1,000 val-
idation images are used during training while the remained images are ignored.
Since there are rare LiDAR points at the top of depth maps, the input images
are bottom center cropped [49,47,59,29] to 1216× 256.
Virtual KITTI Dataset [11] is a synthetic dataset cloned from the real world
KITTI video sequences. In addition, it also produces color images under various
lighting (e.g., sunset, morning) and weather (e.g., rain, fog) conditions. Following
GuideNet [47], we use the masks generated from sparse depths of KITTI dataset
to obtain sparse samples. Such strategy makes it closed to real-world situation
for the distribution of sparse depths. Sequences of 0001, 0002, 0006, and 0018
are used for training, 0020 with various lighting and weather conditions is used
for testing. It contributes to 1,289 frames for fine-tuning and 837 frames for
evaluating each condition.
NYUv2 Dataset [44] is comprised of video sequences from a variety of indoor
scenes as recorded by both the color and depth cameras from the Microsoft
Kinect. Paired color images and depth maps in 464 indoor scenes are commonly
used. Following previous depth completion methods [33,3,38,36,47], we train our
model on 50K images from the official training split, and test on the 654 images
from the official labeled test set. Each image is downsized to 320×240, and then
304×228 center-cropping is applied. As the input resolution of our network must
be a multiple of 32, we further pad the images to 320 × 256, but evaluate only
at the valid region of size 304×228 to keep fair comparison with other methods.
Metrics. For the outdoor KITTI depth completion dataset, following the KITTI
benchmark and existing methods [36,47,29,17], we use four standard metrics for
evaluation, including RMSE, MAE, iRMSE, and iMAE. For the indoor NYUv2
dataset, following previous works [3,38,36,47,29], three metrics are selected for
evaluation, including RMSE, REL, and δi (i = 1.25, 1.252, 1.253).

5.2 Implementation Details

The model is particularly trained with 4 TITAN RTX GPUs. We train it for 20
epochs with the loss defined in Eq. 7. We use ADAM [23] as the optimizer with
the momentum of β1 = 0.9, β2 = 0.999, a starting learning rate of 1× 10−3, and
weight decay of 1 × 10−6. The learning rate drops by half every 5 epochs. The
synchronized cross-GPU batch normalization [21,55] is used when training.
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Method
RMSE MAE iRMSE iMAE
mm mm 1/km 1/km

CSPN [5] 1019.64 279.46 2.93 1.15
BDBF [39] 900.38 216.44 2.37 0.89
TWISE [19] 840.20 195.58 2.08 0.82
NConv [10] 829.98 233.26 2.60 1.03
S2D [33] 814.73 249.95 2.80 1.21
Fusion [49] 772.87 215.02 2.19 0.93
DLiDAR [38] 758.38 226.50 2.56 1.15
Zhu [60] 751.59 198.09 1.98 0.85
ACMNet [59] 744.91 206.09 2.08 0.90
CSPN++ [4] 743.69 209.28 2.07 0.90
NLSPN [36] 741.68 199.59 1.99 0.84
GuideNet [47] 736.24 218.83 2.25 0.99
FCFRNet [29] 735.81 217.15 2.20 0.98
PENet [17] 730.08 210.55 2.17 0.94

RigNet (ours) 712.66 203.25 2.08 0.90

Table 3. Quantitative comparisons on
KITTI depth completion benchmark.

Method
RMSE REL

δ1.25 δ1.252 δ1.253m m

Bilateral [44] 0.479 0.084 92.4 97.6 98.9
Zhang [56] 0.228 0.042 97.1 99.3 99.7
S2D 18 [34] 0.230 0.044 97.1 99.4 99.8
DCoeff [20] 0.118 0.013 99.4 99.9 -
CSPN [5] 0.117 0.016 99.2 99.9 100.0
CSPN++ [4] 0.116 - - - -
DLiDAR [38] 0.115 0.022 99.3 99.9 100.0
Xu et al. [51] 0.112 0.018 99.5 99.9 100.0
FCFRNet [29] 0.106 0.015 99.5 99.9 100.0
ACMNet [59] 0.105 0.015 99.4 99.9 100.0
PRNet [25] 0.104 0.014 99.4 99.9 100.0
GuideNet [47] 0.101 0.015 99.5 99.9 100.0
TWISE [19] 0.097 0.013 99.6 99.9 100.0
NLSPN [36] 0.092 0.012 99.6 99.9 100.0

RigNet (ours) 0.090 0.013 99.6 99.9 100.0

Table 4. Quantitative comparisons on
NYUv2 dataset.

5.3 Evaluation on KITTI Dataset

Table 3 shows the quantitative results on KITTI benchmark, whose dominant
evaluation metric is the RMSE. Our RigNet ranks 1st among publicly published
papers when submitting, outperforming the 2nd with significant 17.42mm im-
provement while the errors of other methods are very closed. Here, the perfor-
mance of our RigNet is also better than those approaches that employ additional
dataset, e.g., DLiDAR [38] utilizes CARLA [9] to predict surface normals for
better depth predictions. Qualitative comparisons with several state-of-the-art
works are shown in Fig. 4. While all methods provide visually good results in
general, our estimated depth maps possess more details and more accurate ob-
ject boundaries. The corresponding error maps can offer supports more clearly.
For example, among the marked iron pillars in the first row of Fig. 4, the error
of our prediction is significantly lower than the others.

5.4 Evaluation on NYUv2 Dataset

To verify the performance of proposed method on indoor scenes, following ex-
isting approaches [4,36,47,29], we train our repetitive image guided network on
the NYUv2 dataset [44] with the setting 500 sparse samples. As illustrated in
Table 4, our model achieves the best performance among all traditional and lat-
est approaches without using additional datasets, which proves that our network
possesses stronger generalization capability. Fig. 5 demonstrates the qualitative
visualization results. Obviously, compared with those state-of-the-art methods,
our RigNet can recover more detailed structures with lower errors at most pix-
els, including sharper boundaries and more complete object shapes. For example,
among the marked doors in the last row of Fig. 5, our prediction is very close to
the ground truth, while others either have large errors in the whole regions or
have blurry shapes on specific objects.

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
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(a) Color image (c) FCFRNet (d) CSPN(b) GuideNet (e) RigNet (ours)

Fig. 4. Qualitative results on KITTI depth completion test set, including (b) GuideNet
[47], (c) FCFRNet [29], and (d) CSPN [5]. Given sparse depth maps and the aligned
color images (1st column), depth completion models output dense depth predictions
(e.g., 2nd column). We provide error maps borrowed from the KITTI leaderboard
for detailed discrimination. Warmer color in error maps refer to higher error.

(a) Color image (c) NLSPN (d) ACMNet (e) CSPN (g) GT(f) RigNet (ours)(b) Sparse depth

Fig. 5. Qualitative results on NYUv2 test set. From left to right: (a) color image, (b)
sparse depth, (c) NLSPN [36], (d) ACMNet [59], (e) CSPN [5], (f) our RigNet, and (g)
ground truth. We present the results of these four methods under 500 samples. The
circled rectangle areas show the recovery of object details.

5.5 Ablation Studies

Here we employ extensive experiments to verify the effectiveness of each proposed
component, including the repetitive hourglass network (RHN-Table 5) and the
repetitive guidance module (RG-Table 6), which consists of the efficient guidance
algorithm (EG) and the adaptive fusion mechanism (AF). Note that the batch
size is set to 8 when computing the GPU memory consumption.
(1) Effect of Repetitive Hourglass Network.

The state-of-the-art baseline GuideNet [47] employs 1 ResNet-18 as backbone
and guided convolution G1 to predict dense depth. To validate the effect of our
RHN, we explore the backbone design of the image guidance branch for the
specific depth completion task from four aspects, which are illustrated in Table 5.

(i) Deeper single backbone vs. RHN. The second column of Table 5
shows that, when replacing the single ResNet-10 with ResNet-18, the error is re-
duced by 43mm. However, when deepening the baseline from 18 to 26/34/50, the



RigNet: Repetitive Image Guided Network for Depth Completion 11

Method
Deeper More Deeper-More Our parallel RHN

10-1 18-1 26-1 34-1 50-1 18-2 18-3 18-4 34-2 34-3 50-2 10-2 10-3 18-2 18-3

Parameter (M) 59 63 65 71 84 72 81 91 89 107 104 60 61 64 65

Model size (M) 224 239 246 273 317 274 309 344 339 407 398 228 232 242 246

RMSE (mm) 822 779 780 778 777 802 816 811 807 801 800 803 798 772 769

Table 5. Ablation studies of RHN on KITTI validation set. 18-1 denotes that we use
1 ResNet-18 as backbone, which is also the baseline. ‘Deeper’/‘More’ denotes that we
conduct single&deeper/multiple&tandem hourglass units as backbone. Note that each
layer of RHN2,3 only contains two convolutions while the RHN1 employs ResNet.

errors have barely changed, which indicate that simply increasing the network
depth of image guidance branch cannot deal well with the specific depth comple-
tion task. Differently, with little sacrifice of parameters (∼2 M), our RHN-10-3
and RHN-18-3 are 24mm and 10mm superior to Deeper-10-1 and Deeper-18-1,
respectively. Fig. 6 shows that the image feature of our parallel RHN-18-3 has
much clearer and richer contexts than that of the baseline Deeper-18-1.

(ii) More tandem backbones vs. RHN. As shown in the third column of
Table 5, we stack the hourglass unit in series. The models of More-18-2, More-
18-3, and More-18-4 have worse performances than the baseline Deeper-18-1. It
turns out that the combination of tandem hourglass units is not sufficient to
provide clearer image semantic guidance for the depth recovery. In contrast, our
parallel RHN achieves better results with fewer parameters and smaller model
sizes. These facts give strong evidence that the parallel repetitive design in image
guidance branch is effective for the depth completion task.

(iii) Deeper-More backbones vs. RHN. As illustrated in the fourth
column of Table 5, deeper hourglass units are deployed in serial way. We can see
that the Deeper-More combinations are also not very effective, since the errors
of them are higher than the baseline while RHN’s error is 10mm lower. It verifies
again the effectiveness of the lightweight RHN design.
(2) Effect of Repetitive Guidance Module.

(i) Efficient guidance. Note that we directly output the features in EG3

when not employing AF. Tables 1 and 2 have provided quantitative analysis in
theory for EG design. Based on (a), we disable G1 by replacing it with EG1.
Comparing (b) with (a) in Table 6, both of which carry out the guided convo-
lution technology only once, although the error of (c) goes down a little bit, the
GPU memory is heavily reduced by 11.95GB. These results give strong evidence
that our new guidance design is not only effective but also efficient.

(ii) Repetitive guidance. When the recursion number k of EG increases,
the errors of (c) and (d) are 6.3mm and 11.2mm significantly lower than that
of (b) respectively. Meanwhile, as illustrated in Fig. 6, since our repetition in
depth (d) can continuously model high-frequency components, the intermediate
depth feature possesses more detailed boundaries and the corresponding image
guidance branch consistently has a high response nearby the regions. These facts
forcefully demonstrate the effectiveness of our repetitive guidance design.
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Method RHN3
RG AF Memory RMSE

G1 EG1 EG2 EG3 add concat ours (GB) (mm)

baseline ✓ ±0 778.6

(a) ✓ ✓ +1.35 769.0

(b) ✓ ✓ -10.60 768.6

(c) ✓ ✓ ✓ +2.65 762.3

(d) ✓ ✓ ✓ ✓ +13.22 757.4

(e) ✓ ✓ ✓ ✓ ✓ +13.22 755.8

(f) ✓ ✓ ✓ ✓ ✓ +13.22 754.6

(g) ✓ ✓ ✓ ✓ ✓ +13.28 752.1

Table 6. Ablation studies of RG/AF on KITTI validation set. RG-EGk refer to the
case where we repeatedly use EG k times. ‘±0’ refers to 23.37GB. G1 represents the
raw guided convolution in GuideNet [47], which is used only once in one fusion stage.

depth feature

image feature

RGBD input Baseline Repetition in image (a) Repetition in depth (d)

Fig. 6. Visual comparisons of intermediate features of the baseline and our repetition.

(iii) Adaptive fusion. Based on (d) that directly outputs the feature of RG-
EG3, we choose to utilize all features of RG-EGk (k = 1, 2, 3) to produce better
depth representations. (e), (f), and (g) refer to addition, concatenation, and our
AF strategies, respectively. Specifically in (f), we conduct a 3 × 3 convolution
to control the channel to be the same as RG-EG3’s after concatenation. As we
can see from the ‘AF’ column of Table 6, all of the three strategies improve
the performance of the model with a little bit GPU memory sacrifice (about 0-
0.06GB), which demonstrates that aggregating multi-step features in repetitive
procedure is effective. Furthermore, our AF mechanism obtains the best result
among them, outperforming (d) 5.3mm. These facts prove that our AF design
benefits the system better than simple fusion strategies. Detailed difference of
intermediate features produced by our repetitive design is shown in Figs. 2 and 6.

5.6 Generalization Capabilities

In this subsection, we further validate the generalization capabilities of our
RigNet on different sparsity, including the number of valid points, various light-
ing and weather conditions, and the synthetic pattern of sparse data. The cor-
responding results are illustrated in Figs. 7 and 8.
(1) Number of valid points

On KITTI selected validation split, we compare our method with four well-
known approaches with available codes, i.e., S2D [33], Fusion [49], NConv [10],
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Fig. 7. Comparisons under different levels of sparsity on KITTI validation split. The
solid lines refer to our method while the dotted ones represent other approaches.
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Fig. 8. Comparisons with existing methods (left) and itself (right) replacing ‘RG’ with
‘+’, under different lighting and weather conditions on Virtual KITTI test split.

and ACMNet [59]. Note that, all models are pretrained on KITTI training split
with raw sparsity, which is equivalent to sampling ratios of 1.0, but not fine-
tuned on the generated depth inputs. Specifically, we first uniformly sample the
raw depth maps with ratios (0.025, 0.05, 0.1, 0.2) and (0.4, 0.6, 0.8, 1.0) to
produce the sparse depth inputs. Then we test the pretrained models on the
inputs. Fig. 7 shows our RigNet significantly outperforms others under all levels
of sparsity in terms of both RMSE and MAE metrics. These results indicates
that our method can deal well with complex data inputs.

(2) Lighting and weather condition

The lighting condition of KITTI dataset is almost invariable and the weather
condition is good. However, both lighting and weather conditions are vitally
important for depth completion, especially for self-driving service. Therefore, we
fine-tune our RigNet (trained on KITTI) on ‘clone’ of Virtual KITTI [11] and
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test under all other different lighting and weather conditions. As shown in the
right of Fig. 8, we compare ‘RG’ with ‘+’ (replace RG with addition),
our method outperforms ‘+’ with large margin on RMSE. The left of Fig. 8
further demonstrates that RigNet has better performance than GuideNet [47]
and ACMNet [59] in complex environments. These results verify that our method
is able to handle polytropic lighting and weather conditions.

In summary, all above-mentioned evidences demonstrate that the proposed
approach has robust generalization capabilities.

6 Conclusion

In this paper, we explored the repetitive design in our image guided network
for depth completion task. We pointed out that there were two issues impeding
the performance of existing outstanding methods, i.e., the blurry guidance in
image and unclear structure in depth. To tackle the former issue, in our im-
age guidance branch, we presented a repetitive hourglass network to produce
discriminative image features. To alleviate the latter issue, in our depth gen-
eration branch, we designed a repetitive guidance module to gradually predict
structure-detailed depth maps. Meanwhile, to model high-frequency components
and reduce GPU memory consumption of the module, we proposed an efficient
guidance algorithm. Furthermore, we designed an adaptive fusion mechanism to
automatically fuse multi-stage depth features for better predictions. Extensive
experiments show that our method achieves outstanding performances.
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