Abstract
Most existing scene text detectors focus on detecting characters or words that only capture partial text messages due to missing contextual information. For a better understanding of text in scenes, it is more desired to detect contextual text blocks (CTBs) which consist of one or multiple integral text units (e.g., characters, words, or phrases) in natural reading order and transmit certain complete text messages. This paper presents contextual text detection, a new setup that detects CTBs for better understanding of texts in scenes. We formulate the new setup by a dual detection task which first detects integral text units and then groups them into a CTB. To this end, we design a novel scene text clustering technique that treats integral text units as tokens and groups them (belonging to the same CTB) into an ordered token sequence. In addition, we create two datasets SCUT-CTW-Context and ReCTS-Context to facilitate future research, where each CTB is well annotated by an ordered sequence of integral text units. Further, we introduce three metrics that measure contextual text detection in local accuracy, continuity, and global accuracy. Extensive experiments show that our method accurately detects CTBs which effectively facilitates downstream tasks such as text classification and translation. The project is available at https://sg-vilab.github.io/publication/xue2022contextual/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9365–9374 (2019)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)
Clausner, C., Antonacopoulos, A., Pletschacher, S.: Icdar 2017 competition on recognition of documents with complex layouts-rdcl2017. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1404–1410. IEEE (2017)
Dai, P., Zhang, S., Zhang, H., Cao, X.: Progressive contour regression for arbitrary-shape scene text detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7393–7402 (2021)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, M., et al.: Most: a multi-oriented scene text detector with localization refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8813–8822 (2021)
Jaume, G., Ekenel, H.K., Thiran, J.P.: Funsd: a dataset for form understanding in noisy scanned documents. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 2, pp. 1–6. IEEE (2019)
Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751. Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/D14-1181. https://www.aclweb.org/anthology/D14-1181
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)
Li, L., Gao, F., Bu, J., Wang, Y., Yu, Z., Zheng, Q.: An end-to-end OCR text re-organization sequence learning for rich-text detail image comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 85–100. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_6
Liao, M., Pang, G., Huang, J., Hassner, T., Bai, X.: Mask TextSpotter v3: segmentation proposal network for robust scene text spotting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Mask textspotter v3: Segmentation proposal network for robust scene text spotting. LNCS, vol. 12356, pp. 706–722. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_41
Liao, M., Shi, B., Bai, X.: Textboxes++: a single-shot oriented scene text detector. IEEE Trans. Image Process. 27(8), 3676–3690 (2018)
Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with differentiable binarization. In: Proceedings of the AAAI (2020)
Liao, M., Zhu, Z., Shi, B., Xia, G.s., Bai, X.: Rotation-sensitive regression for oriented scene text detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5909–5918 (2018)
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M.: Deep learning for generic object detection: A survey. Int. J. Comput. Vision 128(2), 261–318 (2020)
Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with multi-task learning. arXiv preprint arXiv:1605.05101 (2016)
Liu, Y., Chen, H., Shen, C., He, T., Jin, L., Wang, L.: Abcnet: real-time scene text spotting with adaptive bezier-curve network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9809–9818 (2020)
Long, S., He, X., Yao, C.: Scene text detection and recognition: the deep learning era. Int. J. Comput. Vision 129(1), 161–184 (2021)
Long, S., Qin, S., Panteleev, D., Bissacco, A., Fujii, Y., Raptis, M.: Towards end-to-end unified scene text detection and layout analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1049–1059 (2022)
Luong, M.T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025 (2015)
Michael, J., Weidemann, M., Laasch, B., Labahn, R.: ICPR 2020 competition on text block segmentation on a NewsEye dataset. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (eds.) ICPR 2021. LNCS, vol. 12668, pp. 405–418. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68793-9_30
Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318 (2002)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Tech. rep. (1985)
Santa Cruz, R., Fernando, B., Cherian, A., Gould, S.: Deeppermnet: visual permutation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3949–3957 (2017)
Shi, B., Bai, X., Belongie, S.: Detecting oriented text in natural images by linking segments. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2016)
Su, B., Lu, S.: Accurate scene text recognition based on recurrent neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 35–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_3
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)
Tang, J., Yang, Z., Wang, Y., Zheng, Q., Xu, Y., Bai, X.: Seglink++: detecting dense and arbitrary-shaped scene text by instance-aware component grouping. Pattern Recogn. 96, 106954 (2019)
Tian, S., Pan, Y., Huang, C., Lu, S., Yu, K., Lim Tan, C.: Text flow: a unified text detection system in natural scene images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4651–4659 (2015)
Tian, Z., Huang, W., He, T., He, P., Qiao, Yu.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, F., Zhao, L., Li, X., Wang, X., Tao, D.: Geometry-aware scene text detection with instance transformation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1381–1389 (2018)
Wang, R., Fujii, Y., Popat, A.C.: General-purpose ocr paragraph identification by graph convolutional neural networks. arXiv preprint arXiv:2101.12741 (2021)
Wang, W., Xie, E., Li, X., Hou, W., Lu, T., Yu, G., Shao, S.: Shape robust text detection with progressive scale expansion network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9336–9345 (2019)
Wang, Y., Xie, H., Zha, Z.J., Xing, M., Fu, Z., Zhang, Y.: Contournet: taking a further step toward accurate arbitrary-shaped scene text detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11753–11762 (2020)
Xiao, S., Peng, L., Yan, R., An, K., Yao, G., Min, J.: Sequential deformation for accurate scene text detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Sequential deformation for accurate scene text detection. LNCS, vol. 12374, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_7
Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: Layoutlm: pre-training of text and layout for document image understanding. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1192–1200 (2020)
Xue, C., Lu, S., Bai, S., Zhang, W., Wang, C.: I2c2w: image-to-character-to-word transformers for accurate scene text recognition. arXiv preprint arXiv:2105.08383 (2021)
Xue, C., Lu, S., Hoi, S.: Detection and rectification of arbitrary shaped scene texts by using text keypoints and links. arXiv preprint arXiv:2103.00785 (2021)
Xue, C., Lu, S., Zhan, F.: Accurate scene text detection through border semantics awareness and bootstrapping. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 370–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_22
Xue, C., Lu, S., Zhang, W.: Msr: multi-scale shape regression for scene text detection. arXiv preprint arXiv:1901.02596 (2019)
Yu, D., Li, X., Zhang, C., Liu, T., Han, J., Liu, J., Ding, E.: Towards accurate scene text recognition with semantic reasoning networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Yuliang, L., Lianwen, J., Shuaitao, Z., Sheng, Z.: Detecting curve text in the wild: new dataset and new solution. arXiv preprint arXiv:1712.02170 (2017)
Zhang, C., Liang, B., Huang, Z., En, M., Han, J., Ding, E., Ding, X.: Look more than once: An accurate detector for text of arbitrary shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10552–10561 (2019)
Zhang, R., et al.: Icdar 2019 robust reading challenge on reading Chinese text on signboard. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1577–1581. IEEE (2019)
Zhang, W., Qiu, Y., Liao, M., Zhang, R., Wei, X., Bai, X.: Scene text detection with scribble line. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 79–94. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_6
Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022. IEEE (2019)
Zhou, X., et al.: East: an efficient and accurate scene text detector. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Zhu, Y., Chen, J., Liang, L., Kuang, Z., Jin, L., Zhang, W.: Fourier contour embedding for arbitrary-shaped text detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3123–3131 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, C., Huang, J., Zhang, W., Lu, S., Wang, C., Bai, S. (2022). Contextual Text Block Detection Towards Scene Text Understanding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13688. Springer, Cham. https://doi.org/10.1007/978-3-031-19815-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-19815-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19814-4
Online ISBN: 978-3-031-19815-1
eBook Packages: Computer ScienceComputer Science (R0)