Abstract
As camera and LiDAR sensors capture complementary information in autonomous driving, great efforts have been made to conduct semantic segmentation through multi-modality data fusion. However, fusion-based approaches require paired data, i.e., LiDAR point clouds and camera images with strict point-to-pixel mappings, as the inputs in both training and inference stages. It seriously hinders their application in practical scenarios. Thus, in this work, we propose the 2D Priors Assisted Semantic Segmentation (2DPASS) method, a general training scheme, to boost the representation learning on point clouds. The proposed 2DPASS method fully takes advantage of 2D images with rich appearance during training, and then conduct semantic segmentation without strict paired data constraints. In practice, by leveraging an auxiliary modal fusion and multi-scale fusion-to-single knowledge distillation (MSFSKD), 2DPASS acquires richer semantic and structural information from the multi-modal data, which are then distilled to the pure 3D network. As a result, our baseline model shows significant improvement with only point cloud inputs once equipped with the 2DPASS. Specifically, it achieves the state-of-the-arts on two large-scale recognized benchmarks (i.e., SemanticKITTI and NuScenes), i.e., ranking the top-1 in both single and multiple scan(s) competitions of SemanticKITTI.
X. Yan, J. Gao and C. Zheng—Equal first authorship.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Yan, X., et al.: Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3101–3109 (2021)
Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)
Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1754 (2017)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)
Xu, C.: SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1
Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9939–9948 (2021)
Tang, H.: Searching efficient 3D architectures with sparse point-voxel convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 685–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_41
Zheng, C., et al.: Beyond 3D siamese tracking: a motion-centric paradigm for 3D single object tracking in point clouds. arXiv preprint arXiv:2203.01730 (2022)
Zheng, C., et al.: Box-aware feature enhancement for single object tracking on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13199–13208 (2021)
Zhuang, Z., Li, R., Jia, K., Wang, Q., Li, Y., Tan, M.: Perception-aware multi-sensor fusion for 3D lidar semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16280–16290 (2021)
El Madawi, K., Rashed, H., El Sallab, A., Nasr, O., Kamel, H., Yogamani, S.: Rgb and lidar fusion based 3D semantic segmentation for autonomous driving. In: IEEE Intelligent Transportation Systems Conference (ITSC), vol. 2019, pp. 7–12. IEEE (2019)
Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: sequential fusion for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4604–4612 (2020)
Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9297–9307 (2019)
Jaritz, M., Vu, T.H., Charette, R.d., Wirbel, E., Pérez, P.: xmuda: cross-modal unsupervised domain adaptation for 3D semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12605–12614 (2020)
Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: CVPR (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2016)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Wang, P., et al.: Understanding convolution for semantic segmentation. In: IEEE Winter Conference on Applications of Computer Vision (WACV), vol. 2018, pp. 1451–1460. IEEE (2018)
Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., Wang, J.: Ocnet: object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)
Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)
Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)
Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)
Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: Pointasnl: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5589–5598 (2020)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)
Engel, N., Belagiannis, V., Dietmayer, K.: Point transformer. IEEE Access 9, 134826–134840 (2021)
Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3D semantic segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_8
Boulch, A., Le Saux, B., Audebert, N.: Unstructured point cloud semantic labeling using deep segmentation networks. 3DOR 2, 1–8 (2017)
Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3887–3896 (2018)
Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)
Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv 2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4376–4382. IEEE (2019)
Liong, V.E., Nguyen, T.N.T., Widjaja, S., Sharma, D., Chong, Z.J.: Amvnet: assertion-based multi-view fusion network for lidar semantic segmentation. arXiv preprint arXiv:2012.04934 (2020)
Zhou, H., et al.: Cylinder3d: an effective 3D framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)
Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: Af2-s3net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12547–12556 (2021)
Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16024–16033 (2021)
Krispel, G., Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Fuseseg: lidar point cloud segmentation fusing multi-modal data. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1874–1883 (2020)
Meyer, G.P., Charland, J., Hegde, D., Laddha, A., Vallespi-Gonzalez, C.: Sensor fusion for joint 3D object detection and semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS Workshops (2014)
Ba, L.J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS, pp. 2654–2662 (2014)
Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 742–751 (2017)
Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)
Srinivas, S., Fleuret, F.: Knowledge transfer with jacobian matching. In: International Conference on Machine Learning, pp. 4723–4731. PMLR (2018)
Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2827–2836 (2016)
Wang, L., et al.: An efficient approach to informative feature extraction from multimodal data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5281–5288 (2019)
Yuan, S., Stenger, B., Kim, T.K.: Rgb-based 3D hand pose estimation via privileged learning with depth images. arXiv preprint arXiv:1811.07376 (2018)
Liu, Z., Qi, X., Fu, C.W.: 3D-to-2D distillation for indoor scene parsing. In: CVPR (2021)
Zhao, L., Peng, X., Chen, Y., Kapadia, M., Metaxas, D.N.: Knowledge as priors: Cross-modal knowledge generalization for datasets without superior knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6528–6537 (2020)
Liu, Y.C., et al.: Learning from 2D: pixel-to-point knowledge transfer for 3D pretraining. arXiv preprint arXiv:2104.04687 (2021)
Xu, C., et al.: Image2point: 3D point-cloud understanding with pretrained 2D convnets. arXiv preprint arXiv:2106.04180 (2021)
Yuan, Z., Yan, X., Liao, Y., Guo, Y., Li, G., Cui, S., Li, Z.: X-trans2cap: cross-modal knowledge transfer using transformer for 3D dense captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8563–8573 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Citeseer (2013)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)
Alonso, I., Riazuelo, L., Montesano, L., Murillo, A.C.: 3D-mininet: learning a 2D representation from point clouds for fast and efficient 3D lidar semantic segmentation. arXiv preprint arXiv:2002.10893 (2020)
Zhang, Y., et al.: Polarnet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)
Rosu, R.A., Schütt, P., Quenzel, J., Behnke, S.: Latticenet: fast point cloud segmentation using permutohedral lattices. arXiv preprint arXiv:1912.05905 (2019)
Duerr, F., Pfaller, M., Weigel, H., Beyerer, J.: Lidar-based recurrent 3D semantic segmentation with temporal memory alignment. In: 2020 International Conference on 3D Vision (3DV), pp. 781–790. IEEE (2020)
Genova, K., et al.: Learning 3D semantic segmentation with only 2D image supervision. In: 2021 International Conference on 3D Vision (3DV), pp. 361–372. IEEE (2021)
Huang, Z., et al.: Revisiting knowledge distillation: an inheritance and exploration framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3579–3588 (2021)
Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G.T.: Knowledge distillation via softmax regression representation learning. In: ICLR2021 (2021)
Acknowledgement
This work was supported in part by NSFC-Youth 61902335, by the Basic Research Project No. HZQB-KCZYZ-2021067 of Hetao Shenzhen HK S &T Cooperation Zone, by the National Key R &D Program of China with grant No. 2018YFB1800800, by Shenzhen Outstanding Talents Training Fund, by Guangdong Research Project No. 2017ZT07X152 and No. 2019CX01X104, by the Guangdong Provincial Key Laboratory of Future Networks of Intelligence (Grant No. 2022B1212010001), by zelixir biotechnology company Fund, by Tencent Open Fund, and by ITSO at CUHKSZ.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yan, X. et al. (2022). 2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13688. Springer, Cham. https://doi.org/10.1007/978-3-031-19815-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-19815-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19814-4
Online ISBN: 978-3-031-19815-1
eBook Packages: Computer ScienceComputer Science (R0)