Skip to main content

2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13688))

Included in the following conference series:

  • 4694 Accesses

Abstract

As camera and LiDAR sensors capture complementary information in autonomous driving, great efforts have been made to conduct semantic segmentation through multi-modality data fusion. However, fusion-based approaches require paired data, i.e., LiDAR point clouds and camera images with strict point-to-pixel mappings, as the inputs in both training and inference stages. It seriously hinders their application in practical scenarios. Thus, in this work, we propose the 2D Priors Assisted Semantic Segmentation (2DPASS) method, a general training scheme, to boost the representation learning on point clouds. The proposed 2DPASS method fully takes advantage of 2D images with rich appearance during training, and then conduct semantic segmentation without strict paired data constraints. In practice, by leveraging an auxiliary modal fusion and multi-scale fusion-to-single knowledge distillation (MSFSKD), 2DPASS acquires richer semantic and structural information from the multi-modal data, which are then distilled to the pure 3D network. As a result, our baseline model shows significant improvement with only point cloud inputs once equipped with the 2DPASS. Specifically, it achieves the state-of-the-arts on two large-scale recognized benchmarks (i.e., SemanticKITTI and NuScenes), i.e., ranking the top-1 in both single and multiple scan(s) competitions of SemanticKITTI.

X. Yan, J. Gao and C. Zheng—Equal first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://competitions.codalab.org/competitions/20331.

  2. 2.

    https://eval.ai/web/challenges/challenge-page/720/leaderboard/1967.

References

  1. Hu, Q., et al.: Randla-net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  2. Yan, X., et al.: Sparse single sweep lidar point cloud segmentation via learning contextual shape priors from scene completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3101–3109 (2021)

    Google Scholar 

  3. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  6. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1754 (2017)

    Google Scholar 

  7. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: Ccnet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  8. Xu, C.: SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1

    Chapter  Google Scholar 

  9. Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for lidar segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9939–9948 (2021)

    Google Scholar 

  10. Tang, H.: Searching efficient 3D architectures with sparse point-voxel convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 685–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_41

    Chapter  Google Scholar 

  11. Zheng, C., et al.: Beyond 3D siamese tracking: a motion-centric paradigm for 3D single object tracking in point clouds. arXiv preprint arXiv:2203.01730 (2022)

  12. Zheng, C., et al.: Box-aware feature enhancement for single object tracking on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13199–13208 (2021)

    Google Scholar 

  13. Zhuang, Z., Li, R., Jia, K., Wang, Q., Li, Y., Tan, M.: Perception-aware multi-sensor fusion for 3D lidar semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16280–16290 (2021)

    Google Scholar 

  14. El Madawi, K., Rashed, H., El Sallab, A., Nasr, O., Kamel, H., Yogamani, S.: Rgb and lidar fusion based 3D semantic segmentation for autonomous driving. In: IEEE Intelligent Transportation Systems Conference (ITSC), vol. 2019, pp. 7–12. IEEE (2019)

    Google Scholar 

  15. Vora, S., Lang, A.H., Helou, B., Beijbom, O.: Pointpainting: sequential fusion for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4604–4612 (2020)

    Google Scholar 

  16. Behley, J., et al.: Semantickitti: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9297–9307 (2019)

    Google Scholar 

  17. Jaritz, M., Vu, T.H., Charette, R.d., Wirbel, E., Pérez, P.: xmuda: cross-modal unsupervised domain adaptation for 3D semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12605–12614 (2020)

    Google Scholar 

  18. Caesar, H., et al.: nuscenes: a multimodal dataset for autonomous driving. In: CVPR (2020)

    Google Scholar 

  19. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  20. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of deep structured models for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2016)

    Google Scholar 

  21. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  22. Wang, P., et al.: Understanding convolution for semantic segmentation. In: IEEE Winter Conference on Applications of Computer Vision (WACV), vol. 2018, pp. 1451–1460. IEEE (2018)

    Google Scholar 

  23. Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., Wang, J.: Ocnet: object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)

  24. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  25. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  27. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  28. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8895–8904 (2019)

    Google Scholar 

  29. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: flexible and deformable convolution for point clouds. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  30. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)

    Google Scholar 

  31. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: Pointasnl: robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5589–5598 (2020)

    Google Scholar 

  32. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  33. Engel, N., Belagiannis, V., Dietmayer, K.: Point transformer. IEEE Access 9, 134826–134840 (2021)

    Article  Google Scholar 

  34. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3D semantic segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_8

    Chapter  Google Scholar 

  35. Boulch, A., Le Saux, B., Audebert, N.: Unstructured point cloud semantic labeling using deep segmentation networks. 3DOR 2, 1–8 (2017)

    Google Scholar 

  36. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3887–3896 (2018)

    Google Scholar 

  37. Wu, B., Wan, A., Yue, X., Keutzer, K.: Squeezeseg: convolutional neural nets with recurrent crf for real-time road-object segmentation from 3D lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1887–1893. IEEE (2018)

    Google Scholar 

  38. Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv 2: improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 4376–4382. IEEE (2019)

    Google Scholar 

  39. Liong, V.E., Nguyen, T.N.T., Widjaja, S., Sharma, D., Chong, Z.J.: Amvnet: assertion-based multi-view fusion network for lidar semantic segmentation. arXiv preprint arXiv:2012.04934 (2020)

  40. Zhou, H., et al.: Cylinder3d: an effective 3D framework for driving-scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550 (2020)

  41. Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: Af2-s3net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12547–12556 (2021)

    Google Scholar 

  42. Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: Rpvnet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16024–16033 (2021)

    Google Scholar 

  43. Krispel, G., Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Fuseseg: lidar point cloud segmentation fusing multi-modal data. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1874–1883 (2020)

    Google Scholar 

  44. Meyer, G.P., Charland, J., Hegde, D., Laddha, A., Vallespi-Gonzalez, C.: Sensor fusion for joint 3D object detection and semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  45. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: fast and accurate lidar semantic segmentation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)

    Google Scholar 

  46. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NeurIPS Workshops (2014)

    Google Scholar 

  47. Ba, L.J., Caruana, R.: Do deep nets really need to be deep? In: NeurIPS, pp. 2654–2662 (2014)

    Google Scholar 

  48. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 742–751 (2017)

    Google Scholar 

  49. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)

    Google Scholar 

  50. Srinivas, S., Fleuret, F.: Knowledge transfer with jacobian matching. In: International Conference on Machine Learning, pp. 4723–4731. PMLR (2018)

    Google Scholar 

  51. Gupta, S., Hoffman, J., Malik, J.: Cross modal distillation for supervision transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2827–2836 (2016)

    Google Scholar 

  52. Wang, L., et al.: An efficient approach to informative feature extraction from multimodal data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5281–5288 (2019)

    Google Scholar 

  53. Yuan, S., Stenger, B., Kim, T.K.: Rgb-based 3D hand pose estimation via privileged learning with depth images. arXiv preprint arXiv:1811.07376 (2018)

  54. Liu, Z., Qi, X., Fu, C.W.: 3D-to-2D distillation for indoor scene parsing. In: CVPR (2021)

    Google Scholar 

  55. Zhao, L., Peng, X., Chen, Y., Kapadia, M., Metaxas, D.N.: Knowledge as priors: Cross-modal knowledge generalization for datasets without superior knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6528–6537 (2020)

    Google Scholar 

  56. Liu, Y.C., et al.: Learning from 2D: pixel-to-point knowledge transfer for 3D pretraining. arXiv preprint arXiv:2104.04687 (2021)

  57. Xu, C., et al.: Image2point: 3D point-cloud understanding with pretrained 2D convnets. arXiv preprint arXiv:2106.04180 (2021)

  58. Yuan, Z., Yan, X., Liao, Y., Guo, Y., Li, G., Cui, S., Li, Z.: X-trans2cap: cross-modal knowledge transfer using transformer for 3D dense captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8563–8573 (2022)

    Google Scholar 

  59. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  60. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3. Citeseer (2013)

    Google Scholar 

  61. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  62. Alonso, I., Riazuelo, L., Montesano, L., Murillo, A.C.: 3D-mininet: learning a 2D representation from point clouds for fast and efficient 3D lidar semantic segmentation. arXiv preprint arXiv:2002.10893 (2020)

  63. Zhang, Y., et al.: Polarnet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9601–9610 (2020)

    Google Scholar 

  64. Rosu, R.A., Schütt, P., Quenzel, J., Behnke, S.: Latticenet: fast point cloud segmentation using permutohedral lattices. arXiv preprint arXiv:1912.05905 (2019)

  65. Duerr, F., Pfaller, M., Weigel, H., Beyerer, J.: Lidar-based recurrent 3D semantic segmentation with temporal memory alignment. In: 2020 International Conference on 3D Vision (3DV), pp. 781–790. IEEE (2020)

    Google Scholar 

  66. Genova, K., et al.: Learning 3D semantic segmentation with only 2D image supervision. In: 2021 International Conference on 3D Vision (3DV), pp. 361–372. IEEE (2021)

    Google Scholar 

  67. Huang, Z., et al.: Revisiting knowledge distillation: an inheritance and exploration framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3579–3588 (2021)

    Google Scholar 

  68. Yang, J., Martinez, B., Bulat, A., Tzimiropoulos, G.T.: Knowledge distillation via softmax regression representation learning. In: ICLR2021 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSFC-Youth 61902335, by the Basic Research Project No. HZQB-KCZYZ-2021067 of Hetao Shenzhen HK S &T Cooperation Zone, by the National Key R &D Program of China with grant No. 2018YFB1800800, by Shenzhen Outstanding Talents Training Fund, by Guangdong Research Project No. 2017ZT07X152 and No. 2019CX01X104, by the Guangdong Provincial Key Laboratory of Future Networks of Intelligence (Grant No. 2022B1212010001), by zelixir biotechnology company Fund, by Tencent Open Fund, and by ITSO at CUHKSZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2389 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, X. et al. (2022). 2DPASS: 2D Priors Assisted Semantic Segmentation on LiDAR Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13688. Springer, Cham. https://doi.org/10.1007/978-3-031-19815-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19815-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19814-4

  • Online ISBN: 978-3-031-19815-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics