Abstract
Few-shot segmentation is a challenging dense prediction task, which entails segmenting a novel query image given only a small annotated support set. The key problem is thus to design a method that aggregates detailed information from the support set, while being robust to large variations in appearance and context. To this end, we propose a few-shot segmentation method based on dense Gaussian process (GP) regression. Given the support set, our dense GP learns the mapping from local deep image features to mask values, capable of capturing complex appearance distributions. Furthermore, it provides a principled means of capturing uncertainty, which serves as another powerful cue for the final segmentation, obtained by a CNN decoder. Instead of a one-dimensional mask output, we further exploit the end-to-end learning capabilities of our approach to learn a high-dimensional output space for the GP. Our approach sets a new state-of-the-art on the PASCAL-5\(^i\) and COCO-20\(^i\) benchmarks, achieving an absolute gain of \(+8.4\) mIoU in the COCO-20\(^i\) 5-shot setting. Furthermore, the segmentation quality of our approach scales gracefully when increasing the support set size, while achieving robust cross-dataset transfer. Code and trained models are available at https://github.com/joakimjohnander/dgpnet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: International Conference on Machine Learning, pp. 232–241. PMLR (2019)
Azad, R., Fayjie, A.R., Kauffmann, C., Ben Ayed, I., Pedersoli, M., Dolz, J.: On the texture bias for few-shot CNN segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2674–2683 (2021)
Bhat, G., Johnander, J., Danelljan, M., Khan, F.S., Felsberg, M.: Unveiling the power of deep tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 493–509. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_30
Boudiaf, M., Kervadec, H., Masud, Z.I., Piantanida, P., Ben Ayed, I., Dolz, J.: Few-shot segmentation without meta-learning: a good transductive inference is all you need? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13979–13988 (2021)
Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold Gaussian Processes for regression. In: Proceedings of the International Joint Conference on Neural Networks (2016). https://doi.org/10.1109/IJCNN.2016.7727626
Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: British Machine Vision Conference 2018, BMVC 2018 (2019)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision (2010). https://doi.org/10.1007/s11263-009-0275-4
Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: Proceedings of the IEEE International Conference on Computer Vision (2011). https://doi.org/10.1109/ICCV.2011.6126343
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, T., Yang, P., Zhang, C., Yu, G., Mu, Y., Snoek, C.G.: Attention-based multi-context guiding for few-shot semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8441–8448 (2019)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)
Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8334–8343 (2021)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, L., Cao, J., Liu, M., Guo, Y., Chen, Q., Tan, M.: Dynamic extension nets for few-shot semantic segmentation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1441–1449 (2020)
Liu, W., Zhang, C., Lin, G., Liu, F.: CRNet: cross-reference networks for few-shot segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4164–4172 (2020). https://doi.org/10.1109/CVPR42600.2020.00422
Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 142–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_9
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bkg6RiCqY7
Lu, Z., He, S., Zhu, X., Zhang, L., Song, Y.Z., Xiang, T.: Simpler is better: few-shot semantic segmentation with classifier weight transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8741–8750 (2021)
Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6941–6952 (2021)
Nguyen, K., Todorovic, S.: Feature weighting and boosting for few-shot segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. vol. 2019-Octob, pp. 622–631 (2019). https://doi.org/10.1109/ICCV.2019.00071
Patacchiola, M., Turner, J., Crowley, E.J., Storkey, A.: Bayesian meta-learning for the few-shot setting via deep kernels. In: Advances in Neural Information Processing Systems (2020)
Rakelly, K., Shelhamer, E., Darrell, T., Efros, A., Levine, S.: Conditional networks for few-shot semantic segmentation. In: 6th International Conference on Learning Representations, ICLR 2018 - Workshop Track Proceedings (2018)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (2006). https://doi.org/10.7551/mitpress/3206.001.0001
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Salakhutdinov, R., Hinton, G.: Using deep belief nets to learn covariance kernels for Gaussian processes. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference (2009)
Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. In: British Machine Vision Conference 2017, BMVC 2017 (2017). https://doi.org/10.5244/c.31.167
Siam, M., Oreshkin, B., Jagersand, M.: AMP: adaptive masked proxies for few-shot segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 5248–5257 (2019). https://doi.org/10.1109/ICCV.2019.00535
Snell, J., Zemel, R.: Bayesian few-shot classification with one-vs-each pólya-gamma augmented gaussian processes. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=lgNx56yZh8a
Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior Guided Feature Enrichment Network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/tpami.2020.3013717
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, H., Yang, Y., Cao, X., Zhen, X., Snoek, C., Shao, L.: Variational prototype inference for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 525–534 (2021)
Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43
Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 9196–9205 (2019). https://doi.org/10.1109/ICCV.2019.00929
Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 (2016)
Wu, Z., Shi, X., Lin, G., Cai, J.: Learning meta-class memory for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 517–526 (2021)
Xie, G.S., Liu, J., Xiong, H., Shao, L.: Scale-aware graph neural network for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5475–5484 (2021)
Xie, G.S., Xiong, H., Liu, J., Yao, Y., Shao, L.: Few-shot semantic segmentation with cyclic memory network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7293–7302 (2021)
Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 763–778. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_45
Yang, L., Zhuo, W., Qi, L., Shi, Y., Gao, Y.: Mining latent classes for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8721–8730 (2021)
Yang, Y., Meng, F., Li, H., Wu, Q., Xu, X., Chen, S.: A new local transformation module for few-shot segmentation. In: Ro, Y.M., Cheng, W.-H., Kim, J., Chu, W.-T., Cui, P., Choi, J.-W., Hu, M.-C., De Neve, W. (eds.) MMM 2020. LNCS, vol. 11962, pp. 76–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_7
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a Discriminative Feature Network for Semantic Segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00199
Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8312–8321 (2021)
Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 9586–9594 (2019). https://doi.org/10.1109/ICCV.2019.00968
Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANET: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2019). https://doi.org/10.1109/CVPR.2019.00536
Zhang, G., Kang, G., Yang, Y., Wei, Y.: Few-shot segmentation via cycle-consistent transformer. In: Advances in Neural Information Processing Systems 34 (2021)
Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: Sg-one: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50(9), 3855–3865 (2020)
Acknowledgements
This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation; ELLIIT; and the ETH Future Computing Laboratory (EFCL), financed by a donation from Huawei Technologies. The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through grant agreement no. 2018-05973.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Johnander, J., Edstedt, J., Felsberg, M., Khan, F.S., Danelljan, M. (2022). Dense Gaussian Processes for Few-Shot Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-19818-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19817-5
Online ISBN: 978-3-031-19818-2
eBook Packages: Computer ScienceComputer Science (R0)