Skip to main content

Laplacian Mesh Transformer: Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Deep learning-based approaches for shape understanding and processing tasks have attracted considerable attention. Despite the great progress that has been made, the existing approaches fail to efficiently capture sophisticated structure information and critical part features simultaneously, limiting their capability of providing discriminative deep shape features. To address the above issue, we proposed a novel deep learning framework, Laplacian Mesh Transformer, to extract the critical structure and geometry features. We introduce a dual attention mechanism, where the \(1^\textrm{st}\) level self-attention mechanism is used to capture the critical partial/local structure and geometric information on the entire mesh, and the \(2^\textrm{nd}\) level is to fuse the geometrical and structural features together with the learned importance according to a specific downstream task. More particularly, Laplacian spectral decomposition is adopted as our basic structure representation given its ability to describe shape topology (connectivity of triangles). Our approach builds a hierarchical structure to process shape features from fine to coarse using the dual attention mechanism, which is stable under the isometric transformations. It enables an effective feature extraction that can tackle 3D meshes with complex structure and geometry efficiently in various shape analysis tasks, such as shape segmentation and classification. Extensive experiments on the standard benchmarks show that our method outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: ICML, pp. 40–49 (2018)

    Google Scholar 

  2. Ahmed, E., et al.: Deep learning advances on different 3D data representations: a survey, vol. 1. arXiv preprint arXiv:1808.01462 (2018)

  3. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (2015). https://arxiv.org/abs/1409.0473

  5. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.: Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 3189–3197 (2016)

    Google Scholar 

  6. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  7. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. CoRR abs/2005.12872 (2020). https://arxiv.org/abs/2005.12872

  9. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  10. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1907–1915 (2017)

    Google Scholar 

  11. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  12. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  13. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q.V., Salakhutdinov, R.: Transformer-xl: attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860 (2019)

  14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  15. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  16. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. CoRR abs/2010.11929 (2020). https://arxiv.org/abs/2010.11929

  17. Dwivedi, V.P., Bresson, X.: A generalization of transformer networks to graphs. arXiv preprint arXiv:2012.09699 (2020)

  18. Engel, N., Belagiannis, V., Dietmayer, K.: Point transformer. IEEE Access 9, 134826–134840 (2021)

    Article  Google Scholar 

  19. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  20. Gao, L., et al.: SDM-NET: deep generative network for structured deformable mesh. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH Asia 2019) 38(6), 243:1–243:15 (2019)

    Google Scholar 

  21. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216 (1997)

    Google Scholar 

  22. Goodfellow, I.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  23. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: AtlasNet: a papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  24. Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: point cloud transformer. Comput. Visual Media 7(2), 187–199 (2021)

    Article  Google Scholar 

  25. Guo, M.H., et al.: Attention mechanisms in computer vision: a survey (2021)

    Google Scholar 

  26. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn: a network with an edge. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  27. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. arXiv preprint arXiv:1506.05163 (2015)

  28. Hou, J., Dai, A., Nießner, M.: 3d-sis: 3D semantic instance segmentation of rgb-d scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4421–4430 (2019)

    Google Scholar 

  29. Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3464–3473 (2019)

    Google Scholar 

  30. Hu, S.M., et al.: Subdivision-based mesh convolution networks. arXiv preprint arXiv:2106.02285 (2021)

  31. Huang, J., Su, H., Guibas, L.: Robust watertight manifold surface generation method for shapenet models. arXiv preprint arXiv:1802.01698 (2018)

  32. Huang, R., Rakotosaona, M.J., Achlioptas, P., Guibas, L.J., Ovsjanikov, M.: Operatornet: recovering 3D shapes from difference operators. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8588–8597 (2019)

    Google Scholar 

  33. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data: a survey. ACM Comput. Surv. (CSUR) 50(2), 1–38 (2017)

    Article  Google Scholar 

  34. Kalogerakis, E., Averkiou, M., Maji, S., Chaudhuri, S.: 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3779–3788 (2017)

    Google Scholar 

  35. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM Trans. Graph. (TOG) 29(4), 102 (2010)

    Article  Google Scholar 

  36. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Symposium on Geometry Processing, vol. 6, pp. 156–164 (2003)

    Google Scholar 

  37. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: a survey. arXiv preprint arXiv:2101.01169 (2021)

  38. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  39. Li, C.L., Zaheer, M., Zhang, Y., Poczos, B., Salakhutdinov, R.: Point cloud GAN. arXiv preprint arXiv:1810.05795 (2018)

  40. Li, J., Chen, B.M., Lee, G.H.: So-net: self-organizing network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9397–9406 (2018)

    Google Scholar 

  41. Lim, D., et al.: Sign and basis invariant networks for spectral graph representation learning. arXiv preprint arXiv:2202.13013 (2022)

  42. Lin, T., Wang, Y., Liu, X., Qiu, X.: A survey of transformers. arXiv preprint arXiv:2106.04554 (2021)

  43. Lin, Z., et al.: A structured self-attentive sentence embedding. In: International Conference on Learning Representations. OpenReview.net (2017). https://openreview.net/forum?id=BJC_jUqxe

  44. Litany, O., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.: Deep functional maps: Structured prediction for dense shape correspondence. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5659–5667 (2017)

    Google Scholar 

  45. Loop, C.: Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)

    Google Scholar 

  46. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  47. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  48. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05105-4_2

  49. Milano, F., Loquercio, A., Rosinol, A., Scaramuzza, D., Carlone, L.: Primal-dual mesh convolutional neural networks. arXiv preprint arXiv:2010.12455 (2020)

  50. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  51. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  52. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks (2020)

    Google Scholar 

  53. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  Google Scholar 

  54. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  55. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view cnns for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  56. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  57. Qiao, Y.L., Gao, L., Rosin, P., Lai, Y.K., Chen, X., et al.: Learning on 3D meshes with Laplacian encoding and pooling. IEEE Trans. Vis. Comput. Graph. 28, 1317–1327 (2020)

    Article  Google Scholar 

  58. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909 (2019)

  59. Rineau, L., Yvinec, M.: A generic software design for delaunay refinement meshing. Comput. Geom. 38(1–2), 100–110 (2007)

    Article  MathSciNet  Google Scholar 

  60. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  61. Sharp, N., Crane, K.: A laplacian for nonmanifold triangle meshes. In: Computer Graphics Forum (SGP), vol. 39, no. 5, pp. 69–80 (2020)

    Google Scholar 

  62. Sharp, N., Crane, K.: A laplacian for nonmanifold triangle meshes. In: Computer Graphics Forum, vol. 39, pp. 69–80. Wiley Online Library (2020)

    Google Scholar 

  63. Su, H., et al.: SplatNet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)

    Google Scholar 

  64. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  65. Sun, C.Y., Zou, Q.F., Tong, X., Liu, Y.: Learning adaptive hierarchical cuboid abstractions of 3d shape collections. ACM Trans. Graph. (TOG) 38(6), 1–13 (2019)

    Article  Google Scholar 

  66. Tan, Q., Gao, L., Lai, Y.K., Xia, S.: Variational autoencoders for deforming 3D mesh models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2018)

    Google Scholar 

  67. Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: a survey. arXiv preprint arXiv:2009.06732 (2020)

  68. Trappolini, G., Cosmo, L., Moschella, L., Marin, R., Melzi, S., Rodolà, E.: Shape registration in the time of transformers. Adv. Neural Inf. Process. Syst. 34, 5731–5744 (2021)

    Google Scholar 

  69. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstractions by assembling volumetric primitives. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2635–2643 (2017)

    Google Scholar 

  70. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  71. Verma, N., Boyer, E., Verbeek, J.: Feastnet: feature-steered graph convolutions for 3D shape analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2598–2606 (2018)

    Google Scholar 

  72. Wang, F., et al.: Residual attention network for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6458. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.683

  73. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 52–67 (2018)

    Google Scholar 

  74. Wang, P., et al.: 3D shape segmentation via shape fully convolutional networks. Comput. Graph. 76, 182–192 (2018)

    Article  Google Scholar 

  75. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  76. Wang, Y., Asafi, S., Van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    Article  Google Scholar 

  77. Wu, B., et al.: Visual transformers: token-based image representation and processing for computer vision. CoRR abs/2006.03677 (2020). https://arxiv.org/abs/2006.03677

  78. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 82–90 (2016)

    Google Scholar 

  79. Wu, Z., et al.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  80. Xiao, Y.P., Lai, Y.K., Zhang, F.L., Li, C., Gao, L.: A survey on deep geometry learning: from a representation perspective. Comput. Visual Media 6(2), 113–133 (2020)

    Article  Google Scholar 

  81. Xie, Z., Xu, K., Liu, L., Xiong, Y.: 3D shape segmentation and labeling via extreme learning machine. In: Computer Graphics Forum, vol. 33, pp. 85–95. Wiley Online Library (2014)

    Google Scholar 

  82. Yang, J., Mo, K., Lai, Y.K., Guibas, L.J., Gao, L.: Dsg-net: learning disentangled structure and geometry for 3D shape generation, vol. 3, p. 3. arXiv preprint arXiv:2008.05440 (2020)

  83. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32, 1–11 (2019)

    Google Scholar 

  84. Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. (ToG) 35(6), 1–12 (2016)

    Article  Google Scholar 

  85. Yi, L., Su, H., Guo, X., Guibas, L.J.: Syncspeccnn: synchronized spectral cnn for 3D shape segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2282–2290 (2017)

    Google Scholar 

  86. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: Pointr: diverse point cloud completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507 (2021)

    Google Scholar 

  87. Zhang, H., Goodfellow, I.J., Metaxas, D.N., Odena, A.: Self-attention generative adversarial networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 7354–7363. PMLR (2019). https://proceedings.mlr.press/v97/zhang19d.html

  88. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10076–10085 (2020)

    Google Scholar 

  89. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16259–16268 (2021)

    Google Scholar 

  90. Zhou, Y., Tuzel, O.: Voxelnet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 61872440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 17999 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, XJ., Yang, J., Zhang, FL. (2022). Laplacian Mesh Transformer: Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics