Skip to main content

Perceptual Artifacts Localization for Inpainting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

  • 2645 Accesses

Abstract

Image inpainting is an essential task for multiple practical applications like object removal and image editing. Deep GAN-based models greatly improve the inpainting performance in structures and textures within the hole, but might also generate unexpected artifacts like broken structures or color blobs. Users perceive these artifacts to judge the effectiveness of inpainting models, and retouch these imperfect areas to inpaint again in a typical retouching workflow. Inspired by this workflow, we propose a new learning task of automatic segmentation of inpainting perceptual artifacts, and apply the model for inpainting model evaluation and iterative refinement. Specifically, we first construct a new inpainting artifacts dataset by manually annotating perceptual artifacts in the results of state-of-the-art inpainting models. Then we train advanced segmentation networks on this dataset to reliably localize inpainting artifacts within inpainted images. Second, we propose a new interpretable evaluation metric called Perceptual Artifact Ratio (PAR), which is the ratio of objectionable inpainted regions to the entire inpainted area. PAR demonstrates a strong correlation with real user preference. Finally, we further apply the generated masks for iterative image inpainting by combining our approach with multiple recent inpainting methods. Extensive experiments demonstrate the consistent decrease of artifact regions and inpainting quality improvement across the different methods. Dataset and code are available at: https://github.com/owenzlz/PAL4Inpaint

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MMSegmentation github: https://github.com/open-mmlab/mmsegmentation.

References

  1. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE TIP (2001)

    Google Scholar 

  2. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  3. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH (2000)

    Google Scholar 

  4. Cai, W., Wei, Z.: Piigan: generative adversarial networks for pluralistic image inpainting. IEEE Access 8, 48451–48463 (2020)

    Article  Google Scholar 

  5. Chai, L., Bau, D., Lim, S.-N., Isola, P.: What makes fake images detectable? understanding properties that generalize. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 103–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_7

    Chapter  Google Scholar 

  6. Chi, L., Jiang, B., Mu, Y.: Fast fourier convolution. Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  7. Cozzolino, D., Poggi, G., Verdoliva, L.: Splicebuster: a new blind image splicing detector. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)

    Google Scholar 

  8. Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: Forensictransfer: weakly-supervised domain adaptation for forgery detection. arXiv preprint arXiv:1812.02510 (2018)

  9. Criminisi, A., Perez, P., Toyama, K.: Object removal by exemplar-based inpainting. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings, vol. 2, p. II. IEEE (2003)

    Google Scholar 

  10. Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  11. Fang, Y., Zhu, H., Zeng, Y., Ma, K., Wang, Z.: Perceptual quality assessment of smartphone photography. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3677–3686 (2020)

    Google Scholar 

  12. Guo, X., Yang, H., Huang, D.: Image inpainting via conditional texture and structure dual generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14134–14143 (2021)

    Google Scholar 

  13. Guo, Z., Chen, Z., Yu, T., Chen, J., Liu, S.: Progressive image inpainting with full-resolution residual network. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2496–2504 (2019)

    Google Scholar 

  14. Han, X., Wu, Z., Huang, W., Scott, M.R., Davis, L.S.: Finet: compatible and diverse fashion image inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4481–4491 (2019)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  18. Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018)

    Google Scholar 

  19. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  20. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  21. Ke, J., Wang, Q., Wang, Y., Milanfar, P., Yang, F.: Musiq: Multi-scale image quality transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5148–5157 (2021)

    Google Scholar 

  22. Li, A., et al.: Noise doesn’t lie: towards universal detection of deep inpainting. arXiv preprint arXiv:2106.01532 (2021)

  23. Li, H., Huang, J.: Localization of deep inpainting using high-pass fully convolutional network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8301–8310 (2019)

    Google Scholar 

  24. Li, J., He, F., Zhang, L., Du, B., Tao, D.: Progressive reconstruction of visual structure for image inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5962–5971 (2019)

    Google Scholar 

  25. Li, J., Wang, N., Zhang, L., Du, B., Tao, D.: Recurrent feature reasoning for image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7760–7768 (2020)

    Google Scholar 

  26. Liao, L., Xiao, J., Wang, Z., Lin, C.-W., Satoh, S.: Guidance and evaluation: semantic-aware image inpainting for mixed scenes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_41

    Chapter  Google Scholar 

  27. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  28. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  29. Liu, H., Jiang, B., Xiao, Y., Yang, C.: Coherent semantic attention for image inpainting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4170–4179 (2019)

    Google Scholar 

  30. Liu, H., Wan, Z., Huang, W., Song, Y., Han, X., Liao, J.: Pd-gan: probabilistic diverse gan for image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9371–9381 (2021)

    Google Scholar 

  31. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  32. Marra, F., Gragnaniello, D., Cozzolino, D., Verdoliva, L.: Detection of gan-generated fake images over social networks. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 384–389. IEEE (2018)

    Google Scholar 

  33. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: Edgeconnect: Generative image inpainting with adversarial edge learning. arXiv preprint arXiv:1901.00212 (2019)

  34. Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4403–4412 (2019)

    Google Scholar 

  35. Parmar, G., Zhang, R., Zhu, J.Y.: On buggy resizing libraries and surprising subtleties in fid calculation. arXiv preprint arXiv:2104.11222 (2021)

  36. Peng, J., Liu, D., Xu, S., Li, H.: Generating diverse structure for image inpainting with hierarchical vq-vae. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10775–10784 (2021)

    Google Scholar 

  37. Rao, Y., Ni, J.: A deep learning approach to detection of splicing and copy-move forgeries in images. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)

    Google Scholar 

  38. Ren, Y., Yu, X., Zhang, R., Li, T.H., Liu, S., Li, G.: Structureflow: Image inpainting via structure-aware appearance flow. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 181–190 (2019)

    Google Scholar 

  39. Song, Y., Yang, C., Shen, Y., Wang, P., Huang, Q., Kuo, C.C.J.: Spg-net: Segmentation prediction and guidance network for image inpainting. arXiv preprint arXiv:1805.03356 (2018)

  40. Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3667–3676 (2020)

    Google Scholar 

  41. Suvorov, R., et al.: Resolution-robust large mask inpainting with fourier convolutions. arXiv preprint arXiv:2109.07161 (2021)

  42. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  43. Talebi, H., Milanfar, P.: Nima: neural image assessment. IEEE Trans. Image Process. 27(8), 3998–4011 (2018)

    Article  MathSciNet  Google Scholar 

  44. Tian, Z., Shen, C., Wang, X., Chen, H.: Boxinst: High-performance instance segmentation with box annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5443–5452 (2021)

    Google Scholar 

  45. Wan, Z., Zhang, J., Chen, D., Liao, J.: High-fidelity pluralistic image completion with transformers. arXiv preprint arXiv:2103.14031 (2021)

  46. Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3349–3364 (2020)

    Article  Google Scholar 

  47. Wang, N., Ma, S., Li, J., Zhang, Y., Zhang, L.: Multistage attention network for image inpainting. Pattern Recogn. 106, 107448 (2020)

    Article  Google Scholar 

  48. Wang, R., et al.: Fakespotter: a simple yet robust baseline for spotting ai-synthesized fake faces. arXiv preprint arXiv:1909.06122 (2019)

  49. Wang, S.Y., Wang, O., Owens, A., Zhang, R., Efros, A.A.: Detecting photoshopped faces by scripting photoshop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10072–10081 (2019)

    Google Scholar 

  50. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images are surprisingly easy to spot... for now. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695–8704 (2020)

    Google Scholar 

  51. Wang, T., Ouyang, H., Chen, Q.: Image inpainting with external-internal learning and monochromic bottleneck. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5120–5129 (2021)

    Google Scholar 

  52. Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. arXiv preprint arXiv:1810.08771 (2018)

  53. Wu, H., Zhou, J.: Giid-net: generalizable image inpainting detection network. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3867–3871. IEEE (2021)

    Google Scholar 

  54. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 432–448. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_26

    Chapter  Google Scholar 

  55. Xie, C., et al.: Image inpainting with learnable bidirectional attention maps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8858–8867 (2019)

    Google Scholar 

  56. Xiong, W., et al.: Foreground-aware image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5840–5848 (2019)

    Google Scholar 

  57. Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., Li, H.: High-resolution image inpainting using multi-scale neural patch synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6721–6729 (2017)

    Google Scholar 

  58. Yang, J., Qi, Z., Shi, Y.: Learning to incorporate structure knowledge for image inpainting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12605–12612 (2020)

    Google Scholar 

  59. Yeh, R.A., Chen, C., Yian Lim, T., Schwing, A.G., Hasegawa-Johnson, M., Do, M.N.: Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5485–5493 (2017)

    Google Scholar 

  60. Yi, Z., Tang, Q., Azizi, S., Jang, D., Xu, Z.: Contextual residual aggregation for ultra high-resolution image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7508–7517 (2020)

    Google Scholar 

  61. Ying, Z., Niu, H., Gupta, P., Mahajan, D., Ghadiyaram, D., Bovik, A.: From patches to pictures (paq-2-piq): mapping the perceptual space of picture quality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3575–3585 (2020)

    Google Scholar 

  62. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  63. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)

    Google Scholar 

  64. Yu, Y., et al.: Diverse image inpainting with bidirectional and autoregressive transformers. arXiv preprint arXiv:2104.12335 (2021)

  65. Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1486–1494 (2019)

    Google Scholar 

  66. Zeng, Yu., Lin, Z., Yang, J., Zhang, J., Shechtman, E., Lu, H.: High-resolution image inpainting with iterative confidence feedback and guided upsampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 1–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_1

    Chapter  Google Scholar 

  67. Zhang, H., Hu, Z., Luo, C., Zuo, W., Wang, M.: Semantic image inpainting with progressive generative networks. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1939–1947 (2018)

    Google Scholar 

  68. Zhang, L., Wang, J., Shi, J.: Multimodal image outpainting with regularized normalized diversification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3433–3442 (2020)

    Google Scholar 

  69. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  70. Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 30(1), 36–47 (2018)

    Article  Google Scholar 

  71. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in gan fake images. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2019)

    Google Scholar 

  72. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  73. Zhao, L., et al.: Uctgan: diverse image inpainting based on unsupervised cross-space translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5741–5750 (2020)

    Google Scholar 

  74. Zhao, S., et al.: Large scale image completion via co-modulated generative adversarial networks. arXiv preprint arXiv:2103.10428 (2021)

  75. Zheng, C., Cham, T.J., Cai, J.: Pluralistic image completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1438–1447 (2019)

    Google Scholar 

  76. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingzhi Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11861 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L. et al. (2022). Perceptual Artifacts Localization for Inpainting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics