Abstract
Recent work on dense captioning and visual grounding in 3D have achieved impressive results. Despite developments in both areas, the limited amount of available 3D vision-language data causes overfitting issues for 3D visual grounding and 3D dense captioning methods. Also, how to discriminatively describe objects in complex 3D environments is not fully studied yet. To address these challenges, we present D\(^3\)Net, an end-to-end neural speaker-listener architecture that can detect, describe and discriminate. Our D\(^3\)Net unifies dense captioning and visual grounding in 3D in a self-critical manner. This self-critical property of D\(^3\)Net encourages generation of discriminative object captions and enables semi-supervised training on scan data with partially annotated descriptions. Our method outperforms SOTA methods in both tasks on the ScanRefer dataset, surpassing the SOTA 3D dense captioning method by a significant margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Abdelreheem, A., Xia, F., Elhoseiny, M., Guibas, L.: ReferIt3D: neural listeners for fine-grained 3d object identification in real-world scenes. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 422–440. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_25
Achlioptas, P., Fan, J., Hawkins, R., Goodman, N., Guibas, L.J.: ShapeGlot: learning language for shape differentiation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Anderson, P., et al.: Bottom-up and top-down attention for image captioning and visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6077–6086 (2018)
Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)
Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. In: Proceedings of the International Conference on 3D Vision, pp. 667–676, IEEE (2017)
Chen, D.Z., Chang, A.X., Nießner, M.: ScanRefer: 3d object localization in RGB-D scans using natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 202–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_13
Chen, D.Z., Gholami, A., Nießner, M., Chang, A.X.: Scan2Cap: context-aware dense captioning in RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3193–3203 (2021)
Chen, K., Choy, C.B., Savva, M., Chang, A.X., Funkhouser, T., Savarese, S.: Text2Shape: generating shapes from natural language by learning joint embeddings. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 100–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_7
Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal ConvNets: Minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)
Cole, P., Morgan, J.L.: Syntax and semantics. volume 3: Speech acts. Tijdschrift Voor Filosofie 39(3), 550-551 (1977)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)
Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 458–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_28
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2625–2634 (2015)
Fried, D., et al.: Speaker-follower models for vision-and-language navigation. In: Advances in Neural Information Processing Systems (2018)
Golland, D., Liang, P., Klein, D.: A game-theoretic approach to generating spatial descriptions. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 410–419 (2010)
Hendricks, L.A., Akata, Z., Rohrbach, M., Donahue, J., Schiele, B., Darrell, T.: Generating visual explanations. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_1
Hou, J., Dai, A., Nießner, M.: 3D-SIS: 3D semantic instance segmentation of RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4421–4430 (2019)
Hou, J., Dai, A., Nießner, M.: RevealNet: seeing behind objects in RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2098–2107 (2020)
Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 108–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_7
Hu, R., Xu, H., Rohrbach, M., Feng, J., Saenko, K., Darrell, T.: Natural language object retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4555–4564 (2016)
Hua, B.S., Pham, Q.H., Nguyen, D.T., Tran, M.K., Yu, L.F., Yeung, S.K.: SceneNN: a scene meshes dataset with annotations. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 92–101, IEEE (2016)
Huang, P.H., Lee, H.H., Chen, H.T., Liu, T.L.: Text-guided graph neural networks for referring 3D instance segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)
Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: dual-set point grouping for 3D instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4867–4876 (2020)
Jiang, W., Ma, L., Jiang, Y.-G., Liu, W., Zhang, T.: Recurrent fusion network for image captioning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 510–526. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_31
Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: fully convolutional localization networks for dense captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4565–4574 (2016)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128–3137 (2015)
Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: referring to objects in photographs of natural scenes. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 787–798 (2014)
Kim, D.J., Choi, J., Oh, T.H., Kweon, I.S.: Dense relational captioning: triple-stream networks for relationship-based captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6271–6280 (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, X., Li, H., Shao, J., Chen, D., Wang, X.: Show, tell and discriminate: image captioning by self-retrieval with partially labeled data. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 353–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_21
Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention via a visual sentinel for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 375–383 (2017)
Luo, R., Price, B., Cohen, S., Shakhnarovich, G.: Discriminability objective for training descriptive captions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6964–6974 (2018)
Luo, R., Shakhnarovich, G.: Comprehension-guided referring expressions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7102–7111 (2017)
Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11–20 (2016)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035, Curran Associates, Inc. (2019)
Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641–2649 (2015)
Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9277–9286 (2019)
Ranzato, M., Chopra, S., Auli, M., Zaremba, W.: Sequence level training with recurrent neural networks. arXiv preprint arXiv:1511.06732 (2015)
Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7008–7024 (2017)
Roh, J., Desingh, K., Farhadi, A., Fox, D.: LanguageRefer: spatial-language model for 3D visual grounding. In: Proceedings of the Conference on Robot Learning (2021)
Sidorov, O., Hu, R., Rohrbach, M., Singh, A.: TextCaps: a dataset for image captioning with reading comprehension. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 742–758. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_44
Song, S., Lichtenberg, S.P., Xiao, J.: SUN RGB-D: A RGB-D scene understanding benchmark suite. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 567–576 (2015)
Thomason, J., Shridhar, M., Bisk, Y., Paxton, C., Zettlemoyer, L.: Language grounding with 3D objects. In: Proceedings of the Conference on Robot Learning (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems, pp. 5998–6008 (2017)
Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4566–4575 (2015)
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)
Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)
Wu, X., Averbuch-Elor, H., Sun, J., Snavely, N.: Towers of babel: combining images, language, and 3D geometry for learning multimodal vision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)
Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International conference on machine learning, pp. 2048–2057 (2015)
Yang, L., Tang, K., Yang, J., Li, L.J.: Dense captioning with joint inference and visual context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2193–2202 (2017)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems 32 (2019)
Yu, L., et al.: MattNet: modular attention network for referring expression comprehension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1307–1315 (2018)
Yu, L., Tan, H., Bansal, M., Berg, T.L.: A joint speaker-listener-reinforcer model for referring expressions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7282–7290 (2017)
Yuan, Z., et al.: X-Trans2Cap: cross-modal knowledge transfer using transformer for 3D dense captioning (2022). arXiv:2203.00843
Yuan, Z., et al.: InstanceRefer: cooperative holistic understanding for visual grounding on point clouds through instance multi-level contextual referring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1791–1800 (2021)
Zhao, L., Cai, D., Sheng, L., Xu, D.: 3DVG-Transformer: relation modeling for visual grounding on point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2928–2937 (2021)
Acknowledgements
This work is funded by Google (AugmentedPerception), the ERC Starting Grant Scan2CAD (804724), and a Google Faculty Award. We would also like to thank the support of the TUM-IAS Rudolf Mößbauer and Hans Fischer Fellowships (Focus Group Visual Computing), as well as the the German Research Foundation (DFG) under the Grant Making Machine Learning on Static and Dynamic 3D Data Practical. This work is also supported in part by the Canada CIFAR AI Chair program and an NSERC Discovery Grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, D.Z., Wu, Q., Nießner, M., Chang, A.X. (2022). D\(^3\)Net: A Unified Speaker-Listener Architecture for 3D Dense Captioning and Visual Grounding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-19824-3_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19823-6
Online ISBN: 978-3-031-19824-3
eBook Packages: Computer ScienceComputer Science (R0)