Skip to main content

Learning Instance-Specific Adaptation for Cross-Domain Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

  • 4020 Accesses

Abstract

We propose a test-time adaptation method for cross-domain image segmentation. Our method is simple: Given a new unseen instance at test time, we adapt a pre-trained model by conducting instance-specific BatchNorm (statistics) calibration. Our approach has two core components. First, we replace the manually designed BatchNorm calibration rule with a learnable module. Second, we leverage strong data augmentation to simulate random domain shifts for learning the calibration rule. In contrast to existing domain adaptation methods, our method does not require accessing the target domain data at training time or conducting computationally expensive test-time model training/optimization. Equipping our method with models trained by standard recipes achieves significant improvement, comparing favorably with several state-of-the-art domain generalization and one-shot unsupervised domain adaptation approaches. Combining our method with the domain generalization methods further improves performance, reaching a new state of the art. Our project page is https://yuliang.vision/InstCal/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Following the “NamedTensor” practice [43], this computes the statistics over the B, H, W dimensions and return vectors with dimension C.

References

  1. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: towards domain generalization using meta-regularization. In: NeurIPS (2018)

    Google Scholar 

  2. Bartler, A., Bühler, A., Wiewel, F., Döbler, M., Yang, B.: Mt3: meta test-time training for self-supervised test-time adaption. arXiv preprint arXiv:2103.16201 (2021)

  3. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benaim, S., Wolf, L.: One-shot unsupervised cross domain translation. In: NeurIPS (2018)

    Google Scholar 

  5. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR, pp. 3722–3731 (2017)

    Google Scholar 

  6. Chen, M., Xue, H., Cai, D.: Domain adaptation for semantic segmentation with maximum squares loss. In: ICCV, pp. 2090–2099 (2019)

    Google Scholar 

  7. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: pixel-level domain transfer with cross-domain consistency. In: CVPR, pp. 1791–1800 (2019)

    Google Scholar 

  8. Cheng, B., et al.: Panoptic-deeplab: a simple, strong, and fast baseline for bottom-up panoptic segmentation. In: CVPR, pp. 12475–12485 (2020)

    Google Scholar 

  9. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: Robustnet: improving domain generalization in urban-scene segmentation via instance selective whitening. In: CVPR, pp. 11580–11590 (2021)

    Google Scholar 

  10. Cohen, T., Shulman, N., Morgenstern, H., Mechrez, R., Farhan, E.: Self-supervised dynamic networks for covariate shift robustness. arXiv preprint arXiv:2006.03952 (2020)

  11. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)

    Google Scholar 

  12. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR Workshop, pp. 702–703 (2020)

    Google Scholar 

  13. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  14. Dubey, A., Ramanathan, V., Pentland, A., Mahajan, D.: Adaptive methods for real-world domain generalization. In: CVPR, pp. 14340–14349 (2021)

    Google Scholar 

  15. Dundar, A., Liu, M.Y., Wang, T.C., Zedlewski, J., Kautz, J.: Domain stylization: a strong, simple baseline for synthetic to real image domain adaptation. arXiv preprint arXiv:1807.09384 (2018)

  16. Fan, X., Wang, Q., Ke, J., Yang, F., Gong, B., Zhou, M.: Adversarially adaptive normalization for single domain generalization. In: CVPR, pp. 8208–8217 (2021)

    Google Scholar 

  17. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. JMLR 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML, pp. 1321–1330 (2017)

    Google Scholar 

  19. Hendrycks, D., et al.: The many faces of robustness: a critical analysis of out-of-distribution generalization. In: ICCV, pp. 8340–8349 (2021)

    Google Scholar 

  20. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: Augmix: a simple data processing method to improve robustness and uncertainty. In: ICLR (2020)

    Google Scholar 

  21. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML, pp. 1989–1998 (2018)

    Google Scholar 

  22. Hu, X., et al.: Mixnorm: Test-time adaptation through online normalization estimation. arXiv preprint arXiv:2110.11478 (2021)

  23. Huang, L., Zhou, Y., Zhu, F., Liu, L., Shao, L.: Iterative normalization: beyond standardization towards efficient whitening. In: CVPR, pp. 4874–4883 (2019)

    Google Scholar 

  24. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, pp. 448–456 (2015)

    Google Scholar 

  25. Khurana, A., Paul, S., Rai, P., Biswas, S., Aggarwal, G.: Sita: single image test-time adaptation. arXiv preprint arXiv:2112.02355 (2021)

  26. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR, pp. 9404–9413 (2019)

    Google Scholar 

  27. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: ICCV, pp. 1446–1455 (2019)

    Google Scholar 

  28. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for practical domain adaptation. In: ICLR Workshop (2017)

    Google Scholar 

  29. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: ICML, pp. 6028–6039 (2020)

    Google Scholar 

  30. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105 (2015)

    Google Scholar 

  31. Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Adversarial style mining for one-shot unsupervised domain adaptation. In: NeurIPS (2020)

    Google Scholar 

  32. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: CVPR, pp. 2507-2516 (2019)

    Google Scholar 

  33. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient cnn architecture design. In: ECCV, pp. 116–131 (2018)

    Google Scholar 

  34. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. In: AAAI, vol. 34, no. 07, pp. 11749–11756 (2020)

    Google Scholar 

  35. Mirza, M.J., Micorek, J., Possegger, H., Bischof, H.: The norm must go on: dynamic unsupervised domain adaptation by normalization. arXiv preprint arXiv:2112.00463 (2021)

  36. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.: Evaluating prediction-time batch normalization for robustness under covariate shift. arXiv preprint arXiv:2006.10963 (2020)

  37. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: ICCV, pp. 4990–4999 (2017)

    Google Scholar 

  38. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via ibn-net. In: ECCV, pp. 464–479 (2018)

    Google Scholar 

  39. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep representation learning. In: ICCV, pp. 1863–1871 (2019)

    Google Scholar 

  40. Qiao, F., Zhao, L., Peng, X.: Learning to learn single domain generalization. In: CVPR, pp. 12556–12565 (2020)

    Google Scholar 

  41. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  42. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR, pp. 3234–3243 (2016)

    Google Scholar 

  43. Rush, A.: Tensor considered harmful. http://nlp.seas.harvard.edu/NamedTensor

  44. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. IJCV 126(9), 973–992 (2018). Sep

    Article  Google Scholar 

  45. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: CVPR, pp. 4510–4520 (2018)

    Google Scholar 

  46. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. NeurIPS 33, 11539–11551 (2020)

    Google Scholar 

  47. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR, pp. 2107–2116 (2017)

    Google Scholar 

  48. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  49. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with self-supervision for generalization under distribution shifts. In: ICML, pp. 9229–9248 (2020)

    Google Scholar 

  50. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 7167–7176 (2017)

    Google Scholar 

  51. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  52. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Generalizing to unseen domains via adversarial data augmentation. In: NeurIPS (2018)

    Google Scholar 

  53. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  54. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. In: ICLR (2021)

    Google Scholar 

  55. Wu, Y., Johnson, J.: Rethinking batch in batchnorm. arXiv preprint arXiv:2105.07576 (2021)

  56. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. In: ICML Workshop (2014)

    Google Scholar 

  57. Yu, F., et al.: Bdd100k: a diverse driving dataset for heterogeneous multitask learning. In: CVPR, pp. 2636–2645 (2020)

    Google Scholar 

  58. Zendel, O., Honauer, K., Murschitz, M., Steininger, D., Dominguez, G.F.: Wilddash - creating hazard-aware benchmarks. In: ECCV, pp. 402–416 (2018)

    Google Scholar 

  59. Zhao, L., Liu, T., Peng, X., Metaxas, D.: Maximum-entropy adversarial data augmentation for improved generalization and robustness. In: NeurIPS (2020)

    Google Scholar 

  60. Zhao, S., Gong, M., Liu, T., Fu, H., Tao, D.: Domain generalization via entropy regularization. NeurIPS 33, 16096–16107 (2020)

    Google Scholar 

  61. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  62. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: ECCV, pp. 289–305 (2018)

    Google Scholar 

  63. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: ICCV, pp. 5982–5991 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Zou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1761 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, Y., Zhang, Z., Li, CL., Zhang, H., Pfister, T., Huang, JB. (2022). Learning Instance-Specific Adaptation for Cross-Domain Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics