Abstract
In class incremental learning (CIL) a model must learn new classes in a sequential manner without forgetting old ones. However, conventional CIL methods consider a balanced distribution for each new task, which ignores the prevalence of long-tailed distributions in the real world. In this work we propose two long-tailed CIL scenarios, which we term ordered and shuffled LT-CIL. Ordered LT-CIL considers the scenario where we learn from head classes collected with more samples than tail classes which have few. Shuffled LT-CIL, on the other hand, assumes a completely random long-tailed distribution for each task. We systematically evaluate existing methods in both LT-CIL scenarios and demonstrate very different behaviors compared to conventional CIL scenarios. Additionally, we propose a two-stage learning baseline with a learnable weight scaling layer for reducing the bias caused by long-tailed distribution in LT-CIL and which in turn also improves the performance of conventional CIL due to the limited exemplars. Our results demonstrate the superior performance (up to 6.44 points in average incremental accuracy) of our approach on CIFAR-100 and ImageNet-Subset. The code is available at https://github.com/xialeiliu/Long-Tailed-CIL.
X. Liu and Y-S. Hu—The first two authors contribute equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelsalam, M., Faramarzi, M., Sodhani, S., Chandar, S.: IIRC: incremental implicitly-refined classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11038–11047 (2021)
Ahn, H., Kwak, J., Lim, S., Bang, H., Kim, H., Moon, T.: SS-IL: separated softmax for incremental learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 844–853 (2021)
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9
Belouadah, E., Popescu, A.: IL2M: class incremental learning with dual memory. In: ICCV, pp. 583–592 (2019)
Belouadah, E., Popescu, A., Kanellos, I.: A comprehensive study of class incremental learning algorithms for visual tasks. Neural Netw. 135, 38–54 (2020)
Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems (2019)
Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15
Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXIX. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41
Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3366–3385 (2021)
Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6
Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91
Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28
Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: International Conference on Computer Vision (2019)
Huang, C., Li, Y., Loy, C.C., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2781–2794 (2019)
Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)
Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: International Conference on Learning Representations (2020)
Kim, C.D., Jeong, J., Kim, G.: Imbalanced continual learning with partitioning reservoir sampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 411–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_25
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. PNAS, 201611835 (2017)
Lee, J., Yun, J., Hwang, S., Yang, E.: Lifelong learning with dynamically expandable networks. In: ICLR (2018)
Li, Z., Hoiem, D.: Learning without forgetting. PAMI 40(12), 2935–2947 (2018)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, X., et al.: Rotate your networks: better weight consolidation and less catastrophic forgetting. In: ICPR (2018)
Liu, Y., Schiele, B., Sun, Q.: Adaptive aggregation networks for class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2544–2553 (2021)
Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)
Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 72–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_5
Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: CVPR, pp. 7765–7773 (2018)
Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation. arXiv preprint arXiv:2010.15277 (2020)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)
Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)
Rajasegaran, J., Hayat, M., Khan, S., Khan, F.S., Shao, L.: Random path selection for incremental learning. In: Advances in Neural Information Processing Systems (2019)
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)
Schwarz, J., et al.: Progress & compress: a scalable framework for continual learning. In: Proceedings of International Conference on Machine Learning, vol. 80, pp. 4528–4537 (2018)
Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: ICML, pp. 4555–4564 (2018)
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NIPS (2017)
Shu, J., et al.: Meta-weight-net: learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)
Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12183–12192 (2020)
Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 (2019)
Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. In: International Conference on Learning Representations (2021)
Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 7032–7042 (2017)
Wu, Y., et al.: Large scale incremental learning. In: International Conference on Computer Vision (2019)
Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15
Yan, S., Xie, J., He, X.: DER: dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3014–3023 (2021)
Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for face recognition with under-represented data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5704–5713 (2019)
Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML, pp. 3987–3995. JMLR. org (2017)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhang, S., Li, Z., Yan, S., He, X., Sun, J.: Distribution alignment: a unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2361–2370 (2021)
Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5409–5418 (2017)
Zhong, Y., et al.: Unequal-training for deep face recognition with long-tailed noisy data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7812–7821 (2019)
Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16489–16498 (2021)
Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)
Acknowledgments
This work is funded by National Key Research and the Development Program of China (No. 2018AAA0100400), NSFC (No. 61922046), the S &T innovation project from the Chinese Ministry of Education, and by the European Commission under the Horizon 2020 Programme, grant number 951911 – AI4Media.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, X., Hu, YS., Cao, XS., Bagdanov, A.D., Li, K., Cheng, MM. (2022). Long-Tailed Class Incremental Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-19827-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19826-7
Online ISBN: 978-3-031-19827-4
eBook Packages: Computer ScienceComputer Science (R0)