Skip to main content

Long-Tailed Class Incremental Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

In class incremental learning (CIL) a model must learn new classes in a sequential manner without forgetting old ones. However, conventional CIL methods consider a balanced distribution for each new task, which ignores the prevalence of long-tailed distributions in the real world. In this work we propose two long-tailed CIL scenarios, which we term ordered and shuffled LT-CIL. Ordered LT-CIL considers the scenario where we learn from head classes collected with more samples than tail classes which have few. Shuffled LT-CIL, on the other hand, assumes a completely random long-tailed distribution for each task. We systematically evaluate existing methods in both LT-CIL scenarios and demonstrate very different behaviors compared to conventional CIL scenarios. Additionally, we propose a two-stage learning baseline with a learnable weight scaling layer for reducing the bias caused by long-tailed distribution in LT-CIL and which in turn also improves the performance of conventional CIL due to the limited exemplars. Our results demonstrate the superior performance (up to 6.44 points in average incremental accuracy) of our approach on CIFAR-100 and ImageNet-Subset. The code is available at https://github.com/xialeiliu/Long-Tailed-CIL.

X. Liu and Y-S. Hu—The first two authors contribute equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelsalam, M., Faramarzi, M., Sodhani, S., Chandar, S.: IIRC: incremental implicitly-refined classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11038–11047 (2021)

    Google Scholar 

  2. Ahn, H., Kwak, J., Lim, S., Bang, H., Kim, H., Moon, T.: SS-IL: separated softmax for incremental learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 844–853 (2021)

    Google Scholar 

  3. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  4. Belouadah, E., Popescu, A.: IL2M: class incremental learning with dual memory. In: ICCV, pp. 583–592 (2019)

    Google Scholar 

  5. Belouadah, E., Popescu, A., Kanellos, I.: A comprehensive study of class incremental learning algorithms for visual tasks. Neural Netw. 135, 38–54 (2020)

    Google Scholar 

  6. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  7. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  8. Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part XXIX. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41

    Chapter  Google Scholar 

  9. Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3366–3385 (2021)

    Google Scholar 

  10. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6

    Chapter  Google Scholar 

  11. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005). https://doi.org/10.1007/11538059_91

    Chapter  Google Scholar 

  12. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: REMIND your neural network to prevent catastrophic forgetting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 466–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_28

    Chapter  Google Scholar 

  13. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: International Conference on Computer Vision (2019)

    Google Scholar 

  14. Huang, C., Li, Y., Loy, C.C., Tang, X.: Deep imbalanced learning for face recognition and attribute prediction. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2781–2794 (2019)

    Article  Google Scholar 

  15. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  MATH  Google Scholar 

  16. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: International Conference on Learning Representations (2020)

    Google Scholar 

  17. Kim, C.D., Jeong, J., Kim, G.: Imbalanced continual learning with partitioning reservoir sampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 411–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_25

    Chapter  Google Scholar 

  18. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. PNAS, 201611835 (2017)

    Google Scholar 

  19. Lee, J., Yun, J., Hwang, S., Yang, E.: Lifelong learning with dynamically expandable networks. In: ICLR (2018)

    Google Scholar 

  20. Li, Z., Hoiem, D.: Learning without forgetting. PAMI 40(12), 2935–2947 (2018)

    Article  Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  22. Liu, X., et al.: Rotate your networks: better weight consolidation and less catastrophic forgetting. In: ICPR (2018)

    Google Scholar 

  23. Liu, Y., Schiele, B., Sun, Q.: Adaptive aggregation networks for class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2544–2553 (2021)

    Google Scholar 

  24. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)

    Google Scholar 

  25. Mallya, A., Davis, D., Lazebnik, S.: Piggyback: adapting a single network to multiple tasks by learning to mask weights. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 72–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_5

    Chapter  Google Scholar 

  26. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: CVPR, pp. 7765–7773 (2018)

    Google Scholar 

  27. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation. arXiv preprint arXiv:2010.15277 (2020)

  28. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989)

    Google Scholar 

  29. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019)

    Article  Google Scholar 

  30. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  31. Rajasegaran, J., Hayat, M., Khan, S., Khan, F.S., Shao, L.: Random path selection for incremental learning. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  32. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  33. Schwarz, J., et al.: Progress & compress: a scalable framework for continual learning. In: Proceedings of International Conference on Machine Learning, vol. 80, pp. 4528–4537 (2018)

    Google Scholar 

  34. Serra, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: ICML, pp. 4555–4564 (2018)

    Google Scholar 

  35. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NIPS (2017)

    Google Scholar 

  36. Shu, J., et al.: Meta-weight-net: learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)

  37. Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12183–12192 (2020)

    Google Scholar 

  38. Van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv preprint arXiv:1904.07734 (2019)

  39. Wang, X., Lian, L., Miao, Z., Liu, Z., Yu, S.X.: Long-tailed recognition by routing diverse distribution-aware experts. In: International Conference on Learning Representations (2021)

    Google Scholar 

  40. Wang, Y.X., Ramanan, D., Hebert, M.: Learning to model the tail. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 7032–7042 (2017)

    Google Scholar 

  41. Wu, Y., et al.: Large scale incremental learning. In: International Conference on Computer Vision (2019)

    Google Scholar 

  42. Xiang, L., Ding, G., Han, J.: Learning from multiple experts: self-paced knowledge distillation for long-tailed classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 247–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_15

    Chapter  Google Scholar 

  43. Yan, S., Xie, J., He, X.: DER: dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3014–3023 (2021)

    Google Scholar 

  44. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Feature transfer learning for face recognition with under-represented data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5704–5713 (2019)

    Google Scholar 

  45. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML, pp. 3987–3995. JMLR. org (2017)

    Google Scholar 

  46. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  47. Zhang, S., Li, Z., Yan, S., He, X., Sun, J.: Distribution alignment: a unified framework for long-tail visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2361–2370 (2021)

    Google Scholar 

  48. Zhang, X., Fang, Z., Wen, Y., Li, Z., Qiao, Y.: Range loss for deep face recognition with long-tailed training data. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5409–5418 (2017)

    Google Scholar 

  49. Zhong, Y., et al.: Unequal-training for deep face recognition with long-tailed noisy data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7812–7821 (2019)

    Google Scholar 

  50. Zhong, Z., Cui, J., Liu, S., Jia, J.: Improving calibration for long-tailed recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16489–16498 (2021)

    Google Scholar 

  51. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.M.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9719–9728 (2020)

    Google Scholar 

Download references

Acknowledgments

This work is funded by National Key Research and the Development Program of China (No. 2018AAA0100400), NSFC (No. 61922046), the S &T innovation project from the Chinese Ministry of Education, and by the European Commission under the Horizon 2020 Programme, grant number 951911 – AI4Media.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xialei Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 239 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Hu, YS., Cao, XS., Bagdanov, A.D., Li, K., Cheng, MM. (2022). Long-Tailed Class Incremental Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics