Abstract
We consider the problem of active domain adaptation (ADA) to unlabeled target data, of which subset is actively selected and labeled given a budget constraint. Inspired by recent analysis on a critical issue from label distribution mismatch between source and target in domain adaptation, we devise a method that addresses the issue for the first time in ADA. At its heart lies a novel sampling strategy, which seeks target data that best approximate the entire target distribution as well as being representative, diverse, and uncertain. The sampled target data are then used not only for supervised learning but also for matching label distributions of source and target domains, leading to remarkable performance improvement. On four public benchmarks, our method substantially outperforms existing methods in every adaptation scenario.
J. Ok and S. Kwak—Co-corresponding authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The domains are chosen considering their consistency with existing benchmarks [36].
- 2.
Unfortunately, \(\text {S}^\text {3}\)VAADA [40] for DomainNet and VisDA-2017 requires infeasible memory consumption, in the supplementary material, we report its performance on a part of scenarios of DomainNet which our resource allows.
References
Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446 (2014)
Asghar, N., Poupart, P., Jiang, X., Li, H.: Deep active learning for dialogue generation. In: Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017) (2017)
Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)
Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)
Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019)
Tachet des Combes, R., Zhao, H., Wang, Y.X., Gordon, G.J.: Domain adaptation with conditional distribution matching and generalized label shift. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2020)
Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution optimal transportation for domain adaptation. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2017)
Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 39(9), 1853–1865 (2016)
Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2020)
Dai, D., Sakaridis, C., Hecker, S., Van Gool, L.: Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding. Int. J. Comput. Vis. (IJCV) 128, 1182–1204 (2020). https://doi.org/10.1007/s11263-019-01182-4
Damodaran, B.B., Kellenberger, B., Flamary, R., Tuia, D., Courty, N.: DeepJDOT: deep joint distribution optimal transport for unsupervised domain adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 467–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_28
Deheeger, F., MOUGEOT, M., Vayatis, N., et al.: Discrepancy-based active learning for domain adaptation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2009)
Fu, B., Cao, Z., Wang, J., Long, M.: Transferable query selection for active domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. (JMLR) 17(1), 2096–2030 (2016)
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. (JMLR) 13(1), 723–773 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
He, T., Jin, X., Ding, G., Yi, L., Yan, C.: Towards better uncertainty sampling: active learning with multiple views for deep convolutional neural network. In: 2019 IEEE International Conference on Multimedia and Expo (ICME) (2019)
Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 27(5), 657–668 (2005)
Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)
Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize! Criticism for interpretability. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2016)
LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predict. Struct. Data 1(0) (2006)
Lee, C.Y., Batra, T., Baig, M.H., Ulbricht, D.: Sliced Wasserstein discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Lee, S., Son, T., Kwak, S.: FIFO: learning fog-invariant features for foggy scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Li, J., Li, G., Shi, Y., Yu, Y.: Cross-domain adaptive clustering for semi-supervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Li, K., Liu, C., Zhao, H., Zhang, Y., Fu, Y.: ECACL: a holistic framework for semi-supervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: Proceedings of the International Conference on Machine Learning (ICML). PMLR (2015)
Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2018)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the International Conference on Machine Learning (ICML). PMLR (2017)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (JMLR) 9(11) (2008)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)
Ostapuk, N., Yang, J., Cudré-Mauroux, P.: Activelink: deep active learning for link prediction in knowledge graphs. In: The World Wide Web Conference (WWW) (2019)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Peng, X., et al.: VisDA: a synthetic-to-real benchmark for visual domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2021–2026 (2018)
Prabhu, V., Chandrasekaran, A., Saenko, K., Hoffman, J.: Active domain adaptation via clustering uncertainty-weighted embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
Purushotham, S., Carvalho, W., Nilanon, T., Liu, Y.: Variational recurrent adversarial deep domain adaptation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2016)
Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Rai, P., Saha, A., Daumé III, H., Venkatasubramanian, S.: Domain adaptation meets active learning. In: Proceedings of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing (2010)
Rangwani, H., Jain, A., Aithal, S.K., Babu, R.V.: S3VAADA: submodular subset selection for virtual adversarial active domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
Rdusseeun, L., Kaufman, P.: Clustering by means of medoids. In: Proceedings of the Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, Switzerland, vol. 31 (1987)
Roth, D., Small, K.: Margin-based active learning for structured output spaces. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 413–424. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_40
Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Sakaridis, C., Dai, D., Gool, L.V.: Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Sakaridis, C., Dai, D., Hecker, S., Van Gool, L.: Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 707–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_42
Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126(9), 973–992 (2018). https://doi.org/10.1007/s11263-018-1072-8
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)
Settles, B.: Active learning literature survey (2009)
Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 287–294 (1992)
Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRT-T approach to unsupervised domain adaptation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)
Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Su, J.C., Tsai, Y.H., Sohn, K., Liu, B., Maji, S., Chandraker, M.: Active adversarial domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2020)
Tan, S., Peng, X., Saenko, K.: Class-imbalanced domain adaptation: an empirical Odyssey. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 585–602. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_38
Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2015)
Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Wang, Z., Du, B., Tu, W., Zhang, L., Tao, D.: Incorporating distribution matching into uncertainty for multiple kernel active learning. IEEE Trans. Knowl. Data Eng. 33(1), 128–142 (2019)
Wang, Z., Ye, J.: Querying discriminative and representative samples for batch mode active learning. ACM Trans. Knowl. Discov. Data (TKDD) 9(3), 1–23 (2015)
Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X., Wang, G.: Active learning for domain adaptation: An energy-based approach. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2022)
Xie, M., et al.: Learning distinctive margin toward active domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Yang, L., et al.: Deep co-training with task decomposition for semi-supervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
Yoon, J., Kang, D., Cho, M.: Semi-supervised domain adaptation via sample-to-sample self-distillation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1978–1987 (2022)
Zhao, H., Des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: Proceedings of the International Conference on Machine Learning (ICML). PMLR (2019)
Acknowledgements
This work was supported by the NRF grant and the IITP grant funded by Ministry of Science and ICT, Korea (NRF-2018R1A5-A1060031, NRF-2021R1A2C3012728, IITP-2019-0-01906, IITP-2020-0-00842, IITP-2021-0-02068, IITP-2022-0-00290).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hwang, S., Lee, S., Kim, S., Ok, J., Kwak, S. (2022). Combating Label Distribution Shift for Active Domain Adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-19827-4_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19826-7
Online ISBN: 978-3-031-19827-4
eBook Packages: Computer ScienceComputer Science (R0)