Skip to main content

Correspondence Reweighted Translation Averaging

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

Translation averaging methods use the consistency of input translation directions to solve for camera translations. However, translation directions obtained using epipolar geometry are error-prone. This paper argues that the improved accuracy of translation averaging should be leveraged to mitigate the errors in the input translation direction estimates. To this end, we introduce weights for individual correspondences which are iteratively refined to yield improved translation directions. In turn, these refined translation directions are averaged to obtain camera translations. This results in an alternating approach to translation averaging. The modularity of our framework allows us to use existing translation averaging methods and improve their results. The efficacy of the scheme is demonstrated by comparing performance with state-of-the-art methods on a number of real-world datasets. We also show that our approach yields reasonably good 3D reconstructions with straightforward triangulation, i.e. without any bundle adjustment iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For large datasets with number of cameras greater than 2000, \(N_{max}\) equals 30 and 5 for CReTA-RLUD and CReTA-BATA respectively.

  2. 2.

    https://ee.iisc.ac.in/cvlab/research/rotaveraging/.

  3. 3.

    https://bbzh.github.io/document/BATA.zip.

  4. 4.

    https://github.com/wilsonkl/SfM_Init.

References

  1. Arie-Nachimson, M., Kovalsky, S.Z., Kemelmacher-Shlizerman, I., Singer, A., Basri, R.: Global motion estimation from point matches. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, pp. 81–88. IEEE (2012)

    Google Scholar 

  2. Arrigoni, F., Fusiello, A.: Bearing-based network localizability: a unifying view. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2049–2069 (2018)

    Article  Google Scholar 

  3. Arrigoni, F., Rossi, B., Fusiello, A.: Robust and efficient camera motion synchronization via matrix decomposition. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 444–455. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_40

    Chapter  Google Scholar 

  4. Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 521–528 (2013)

    Google Scholar 

  5. Chatterjee, A., Govindu, V.M.: Robust relative rotation averaging. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 958–972 (2017)

    Article  Google Scholar 

  6. Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR 2011, pp. 3001–3008. IEEE (2011)

    Google Scholar 

  7. Cui, H., Shen, S., Hu, Z.: Robust global translation averaging with feature tracks. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3727–3732. IEEE (2016)

    Google Scholar 

  8. Cui, Z., Jiang, N., Tang, C., Tan, P.: Linear global translation estimation with feature tracks. In: Proceedings ECCV, vol. 3, pp. 61–75 (2014)

    Google Scholar 

  9. Cui, Z., Tan, P.: Global structure-from-motion by similarity averaging. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 864–872 (2015)

    Google Scholar 

  10. Dellaert, F., Rosen, D.M., Wu, J., Mahony, R., Carlone, L.: Shonan rotation averaging: global optimality by surfing \(SO(p)^n\). In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 292–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_18

    Chapter  Google Scholar 

  11. Dong, Q., Gao, X., Cui, H., Hu, Z.: Robust camera translation estimation via rank enforcement. IEEE Trans. Cybern. 52(2), 862–872 (2020)

    Google Scholar 

  12. Eriksson, A., Olsson, C., Kahl, F., Chin, T.: Rotation averaging and strong duality. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 127–135 (2018)

    Google Scholar 

  13. Goldstein, T., Hand, P., Lee, C., Voroninski, V., Soatto, S.: Shapefit and shapekick for robust, scalable structure from motion. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 289–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_18

    Chapter  Google Scholar 

  14. Govindu, V.M.: Combining two-view constraints for motion estimation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-II. IEEE (2001)

    Google Scholar 

  15. Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I-I. IEEE (2004)

    Google Scholar 

  16. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edn. (2004)

    Google Scholar 

  17. Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averaging using the weiszfeld algorithm. In: CVPR 2011, pp. 3041–3048. IEEE (2011)

    Google Scholar 

  18. Jiang, N., Cui, Z., Tan, P.: A global linear method for camera pose registration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 481–488 (2013)

    Google Scholar 

  19. Kasten, Y., Geifman, A., Galun, M., Basri, R.: Algebraic characterization of essential matrices and their averaging in multiview settings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5895–5903 (2019)

    Google Scholar 

  20. Kasten, Y., Geifman, A., Galun, M., Basri, R.: GPSfM: global projective SFM using algebraic constraints on multi-view fundamental matrices. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3264–3272 (2019)

    Google Scholar 

  21. Kennedy, R., Daniilidis, K., Naroditsky, O., Taylor, C.J.: Identifying maximal rigid components in bearing-based localization. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 194–201. IEEE (2012)

    Google Scholar 

  22. Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  23. McLachlan, G., Krishnan, T.: The EM algorithm and extensions. Wiley, 2nd edn. (2008)

    Google Scholar 

  24. Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust, accurate and scalable structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3248–3255 (2013)

    Google Scholar 

  25. Ozyesil, O., Singer, A.: Robust camera location estimation by convex programming. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2674–2683 (2015)

    Google Scholar 

  26. Ozyesil, O., Singer, A., Basri, R.: Stable camera motion estimation using convex programming. SIAM J. Imag. Sci. 8(2), 1220–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113 (2016)

    Google Scholar 

  28. Shi, Y., Lerman, G.: Message passing least squares framework and its application to rotation synchronization. In: International Conference on Machine Learning, pp. 8796–8806. PMLR (2020)

    Google Scholar 

  29. Sidhartha, C., Govindu, V.M.: It is all in the weights: robust rotation averaging revisited. In: 2021 International Conference on 3D Vision (3DV), pp. 1134–1143. IEEE (2021)

    Google Scholar 

  30. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM SIGGRAPH 2006 papers, pp. 835–846 (2006)

    Google Scholar 

  31. Sweeney, C., Hollerer, T., Turk, M.: Theia: a fast and scalable structure-from-motion library. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 693–696 (2015)

    Google Scholar 

  32. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment — a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) IWVA 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44480-7_21

    Chapter  Google Scholar 

  33. Tron, R., Vidal, R.: Distributed image-based 3-D localization of camera sensor networks. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 901–908. IEEE (2009)

    Google Scholar 

  34. Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_5

    Chapter  Google Scholar 

  35. Wu, C., et al.: VisualSFM: a visual structure from motion system (2011)

    Google Scholar 

  36. Zhuang, B., Cheong, L.F., Lee, G.H.: Baseline desensitizing in translation averaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4539–4547 (2018)

    Google Scholar 

Download references

Acknowledgements

Lalit Manam is supported by a Prime Minister’s Research Fellowship, Government of India. This research was supported in part by a Core Research Grant from Science and Engineering Research Board, Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu Madhav Govindu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2624 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manam, L., Govindu, V.M. (2022). Correspondence Reweighted Translation Averaging. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics