Abstract
Open-set Domain Adaptation (OSDA) aims to recognize classes in the target domain that are seen in the source domain while rejecting other unseen target-exclusive classes into an unknown class, which ignores the diversity of the latter and is therefore incapable of their interpretation. The recently-proposed Semantic Recovery OSDA (SR-OSDA) brings in semantic attributes and attacks the challenge via partial alignment and visual-semantic projection, marking the first step towards interpretable OSDA. Following that line, in this work, we propose a representation learning framework termed Angular Margin Separation (AMS) that unveils the power of discriminative and robust representation for both open-set domain adaptation and cross-domain semantic recovery. Our core idea is to exploit an additive angular margin with regularization for both robust feature fine-tuning and discriminative joint feature alignment, which turns out advantageous to learning an accurate and less biased visual-semantic projection. Further, we propose a post-training re-projection that boosts the performance of seen classes interpretation without deterioration on unseen classes. Verified by extensive experiments, AMS achieves a notable improvement over the existing SR-OSDA baseline, with an average 7.6% increment in semantic recovery accuracy of unseen classes in multiple transfer tasks. Our code is available at AMS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Bucci, S., Borlino, F.C., Caputo, B., Tommasi, T.: Distance-based hyperspherical classification for multi-source open-set domain adaptation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1119–1128 (2022)
Bucci, S., Loghmani, M.R., Tommasi, T.: On the effectiveness of image rotation for open set domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 422–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_25
Chao, W.-L., Changpinyo, S., Gong, B., Sha, F.: An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 52–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_4
Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)
Choi, J., Sharma, G., Schulter, S., Huang, J.-B.: Shuffle and attend: video domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 678–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_40
Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv preprint arXiv:1702.05374 (2017)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Du, Z., Li, J., Lu, K., Zhu, L., Huang, Z.: Learning transferrable and interpretable representations for domain generalization. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3340–3349 (2021)
Feng, Q., Kang, G., Fan, H., Yang, Y.: Attract or distract: exploit the margin of open set. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7990–7999 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jing, M., Li, J., Zhu, L., Ding, Z., Lu, K., Yang, Y.: Balanced open set domain adaptation via centroid alignment. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8013–8020 (2021)
Jing, T., Liu, H., Ding, Z.: Towards novel target discovery through open-set domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9322–9331 (2021)
Kodirov, E., Xiang, T., Gong, S.: Semantic autoencoder for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3174–3183 (2017)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 (2012)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Li, J., Chen, E., Ding, Z., Zhu, L., Lu, K., Shen, H.T.: Maximum density divergence for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 3918–3930 (2020)
Li, J., Du, Z., Zhu, L., Ding, Z., Lu, K., Shen, H.T.: Divergence-agnostic unsupervised domain adaptation by adversarial attacks. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Li, J., Jing, M., Lu, K., Ding, Z., Zhu, L., Huang, Z.: Leveraging the invariant side of generative zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7402–7411 (2019)
Li, J., Jing, M., Zhu, L., Ding, Z., Lu, K., Yang, Y.: Learning modality-invariant latent representations for generalized zero-shot learning. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1348–1356 (2020)
Li, J., Lu, K., Huang, Z., Zhu, L., Shen, H.T.: Transfer independently together: a generalized framework for domain adaptation. IEEE Trans. Cybernet. 49(6), 2144–2155 (2018)
Li, X., Li, J., Zhu, L., Wang, G., Huang, Z.: Imbalanced source-free domain adaptation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3330–3339 (2021)
Li, Y., Wang, D., Hu, H., Lin, Y., Zhuang, Y.: Zero-shot recognition using dual visual-semantic mapping paths. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3279–3287 (2017)
Liu, H., Cao, Z., Long, M., Wang, J., Yang, Q.: Separate to adapt: open set domain adaptation via progressive separation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2927–2936 (2019)
Liu, S., Long, M., Wang, J., Jordan, M.I.: Generalized zero-shot learning with deep calibration network. Advances in Neural Information Processing Systems 31 (2018)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Mensink, T., Verbeek, J., Perronnin, F., Csurka, G.: Distance-based image classification: generalizing to new classes at near-zero cost. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2624–2637 (2013)
Miller, D., Sunderhauf, N., Milford, M., Dayoub, F.: Class anchor clustering: a loss for distance-based open set recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3570–3578 (2021)
Narayan, S., Gupta, A., Khan, F.S., Snoek, C.G.M., Shao, L.: Latent embedding feedback and discriminative features for zero-shot classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 479–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_29
Panareda Busto, P., Gall, J.: Open set domain adaptation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 754–763 (2017)
Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1406–1415 (2019)
Pourpanah, F., et al.: A review of generalized zero-shot learning methods. arXiv preprint arXiv:2011.08641 (2020)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Rodríguez, P., Laradji, I., Drouin, A., Lacoste, A.: Embedding propagation: smoother manifold for few-shot classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 121–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_8
Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161. PMLR (2015)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Saito, K., Yamamoto, S., Ushiku, Y., Harada, T.: Open set domain adaptation by backpropagation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 156–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_10
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Advances in Neural Information Processing Systems 30 (2017)
Song, J., Shen, C., Yang, Y., Liu, Y., Song, M.: Transductive unbiased embedding for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1024–1033 (2018)
Su, H., Li, J., Chen, Z., Zhu, L., Lu, K.: Distinguishing unseen from seen for generalized zero-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7885–7894 (2022)
Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)
Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6857–6866 (2018)
Wang, Z., Gou, Y., Li, J., Zhang, Y., Yang, Y.: Region semantically aligned network for zero-shot learning. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 2080–2090 (2021)
Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. 41(9), 2251–2265 (2018)
Xu, X., et al.: Matrix tri-factorization with manifold regularizations for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3798–3807 (2017)
Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)
Ye, M., Guo, Y.: Zero-shot classification with discriminative semantic representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7140–7148 (2017)
You, F., Li, J., Zhu, L., Chen, Z., Huang, Z.: Domain adaptive semantic segmentation without source data. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3293–3302 (2021)
Zhang, L., Xiang, T., Gong, S.: Learning a deep embedding model for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2021–2030 (2017)
Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and global consistency. Advances in Neural Information Processing Systems 16 (2003)
Zhu, Y., Xie, J., Liu, B., Elgammal, A.: Learning feature-to-feature translator by alternating back-propagation for generative zero-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9844–9854 (2019)
Zhuo, J., Wang, S., Cui, S., Huang, Q.: Unsupervised open domain recognition by semantic discrepancy minimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 750–759 (2019)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant 62176042 and 62073059, in part by CCF-Baidu Open Fund (NO. 2021PP15002000), in part by CCF-Tencent Open Fund (NO. RAGR20210107), and in part by Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515140013).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, X., Li, J., Du, Z., Zhu, L., Li, W. (2022). Interpretable Open-Set Domain Adaptation via Angular Margin Separation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-19830-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19829-8
Online ISBN: 978-3-031-19830-4
eBook Packages: Computer ScienceComputer Science (R0)