Abstract
It is necessary to develop effective face forgery detection methods with constantly evolving technologies in synthesizing realistic faces which raises serious risks on malicious face tampering. A large and growing body of literature has investigated deep learning-based approaches, especially those taking frequency clues into consideration, have achieved remarkable progress on detecting fake faces. The method based on frequency clues result in the inconsistency across frames and make the final detection result unstable even in the same deepfake video. So, these patterns are still inadequate and unstable. In addition to this, the inconsistency problem in the previous methods is significantly exacerbated due to the diversities among various forgery methods. To address this problem, we propose a novel deep learning framework for face forgery detection in cross domain. The proposed framework explores on mining the potential consistency through the correlated representations across multiple frames as well as the complementary clues from both RGB and frequency domains. We also introduce an instance discrimination module to determine the discriminative results center for each frame across the video, which is a strategy that adaptive adjust with during inference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Deepfakes. https://github.com/deepfakes/faceswap/
Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: Mesonet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7. IEEE (2018)
Agarwal, S., El-Gaaly, T., Farid, H., Lim, S.N.: Detecting deep-fake videos from appearance and behavior. arXiv preprint arXiv:2004.14491 (2020)
Amerini, I., Galteri, L., Caldelli, R., Del Bimbo, A.: Deepfake video detection through optical flow based cnn. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10 (2016)
Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987 (2019)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chai, L., Bau, D., Lim, S.N., Isola, P.: What makes fake images detectable? understanding properties that generalize. arXiv preprint arXiv:2008.10588 (2020)
Chen, Z., Yang, H.: Manipulated face detector: joint spatial and frequency domain attention network. arXiv preprint arXiv:2005.02958 (2020)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Ciftci, U.A., Demir, I., Yin, L.: Fakecatcher: detection of synthetic portrait videos using biological signals. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Ciftci, U.A., Demir, I., Yin, L.: How do the hearts of deep fakes beat? deep fake source detection via interpreting residuals with biological signals. arXiv preprint arXiv:2008.11363 (2020)
Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164 (2017)
Dang, H., Liu, F., Stehouwer, J., Liu, X., Jain, A.K.: On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5781–5790 (2020)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Dolhansky, B., Howes, R., Pflaum, B., Baram, N., Ferrer, C.C.: The deepfake detection challenge (dfdc) preview dataset. arXiv preprint arXiv:1910.08854 (2019)
Durall, R., Keuper, M., Pfreundt, F.J., Keuper, J.: Unmasking deepfakes with simple features. arXiv preprint arXiv:1911.00686 (2019)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6202–6211 (2019)
Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. arXiv preprint arXiv:2003.08685 (2020)
Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)
Gu, Z., et al.: Spatiotemporal inconsistency learning for deepfake video detection. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3473–3481 (2021)
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D cnns and imagenet? In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)
He, Y., et al.: Forgerynet: a versatile benchmark for comprehensive forgery analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4360–4369 (2021)
Jiang, L., Li, R., Wu, W., Qian, C., Loy, C.C.: Deeperforensics-1.0: a large-scale dataset for real-world face forgery detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2886–2895. IEEE (2020)
Kumar, A., Bhavsar, A., Verma, R.: Detecting deepfakes with metric learning. In: 2020 8th International Workshop on Biometrics and Forensics (IWBF), pp. 1–6 (2020). https://doi.org/10.1109/IWBF49977.2020.9107962
Li, L., et al.: Face x-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001–5010 (2020)
Li, X., et al.: Sharp multiple instance learning for deepfake video detection. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1864–1872 (2020)
Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018)
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-df (v2): a new dataset for deepfake forensics. arXiv preprint arXiv:1909.12962 (2019)
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-df: a large-scale challenging dataset for deepfake forensics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3207–3216 (2020)
Liu, B., et al.: Negative margin matters: understanding margin in few-shot classification. arXiv preprint arXiv:2003.12060 (2020)
Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8060–8069 (2020)
Mas Montserrat, D., et al.: Deepfakes detection with automatic face weighting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 668–669 (2020)
Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-branch recurrent network for isolating deepfakes in videos. arXiv preprint arXiv:2008.03412 (2020)
Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 83–92. IEEE (2019)
Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., Manocha, D.: Emotions don’t lie: a deepfake detection method using audio-visual affective cues. arXiv preprint arXiv:2003.06711 (2020)
Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting and segmenting manipulated facial images and videos. arXiv preprint arXiv:1906.06876 (2019)
Qian, Q., Shang, L., Sun, B., Hu, J., Li, H., Jin, R.: Softtriple loss: deep metric learning without triplet sampling. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6450–6458 (2019)
Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. arXiv preprint arXiv:2007.09355 (2020)
Rahmouni, N., Nozick, V., Yamagishi, J., Echizen, I.: Distinguishing computer graphics from natural images using convolution neural networks. In: 2017 IEEE Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2017)
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1–11 (2019)
Sabir, E., Cheng, J., Jaiswal, A., AbdAlmageed, W., Masi, I., Natarajan, P.: Recurrent convolutional strategies for face manipulation detection in videos. Interfaces (GUI) 3(1), 80–87 (2019)
Song, L., Liu, B., Yin, G., Dong, X., Zhang, Y., Bai, J.X.: Tacr-net: editing on deep video and voice portraits. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 478–486 (2021)
Song, L., Yin, G., Liu, B., Zhang, Y., Yu, N.: Fsft-net: face transfer video generation with few-shot views. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 3582–3586. IEEE (2021)
Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)
Tolosana, R., Romero-Tapiador, S., Fierrez, J., Vera-Rodriguez, R.: Deepfakes evolution: analysis of facial regions and fake detection performance. arXiv preprint arXiv:2004.07532 (2020)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Wang, H., Wu, X., Huang, Z., Xing, E.P.: High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694 (2020)
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: Cnn-generated images are surprisingly easy to spot... for now. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 7 (2020)
Wang, Y., Dantcheva, A.: A video is worth more than 1000 lies: comparing 3dcnn approaches for detecting deepfakes. In: FG 2020, 15th IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires, Argentina, 18–22 May 2020 (2020)
Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning (2019)
Zhang, H., et al.: Resnest: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)
Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 31, 1–11 (2018)
Zhao, T., Xu, X., Xu, M., Ding, H., Xiong, Y., Xia, W.: Learning self-consistency for deepfake detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15023–15033 (2021)
Zheng, Y., Bao, J., Chen, D., Zeng, M., Wen, F.: Exploring temporal coherence for more general video face forgery detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15044–15054 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, L. et al. (2022). Adaptive Face Forgery Detection in Cross Domain. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-19830-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19829-8
Online ISBN: 978-3-031-19830-4
eBook Packages: Computer ScienceComputer Science (R0)