Abstract
Unsupervised Domain Adaptation (UDA) aims to adapt the model trained on the labeled source domain to an unlabeled target domain. In this paper, we present Prototypical Contrast Adaptation (ProCA), a simple and efficient contrastive learning method for unsupervised domain adaptive semantic segmentation. Previous domain adaptation methods merely consider the alignment of the intra-class representational distributions across various domains, while the inter-class structural relationship is insufficiently explored, resulting in the aligned representations on the target domain might not be as easily discriminated as done on the source domain anymore. Instead, ProCA incorporates inter-class information into class-wise prototypes, and adopts the class-centered distribution alignment for adaptation. By considering the same class prototypes as positives and other class prototypes as negatives to achieve class-centered distribution alignment, ProCA achieves state-of-the-art performance on classical domain adaptation tasks, i.e., GTA5 \(\rightarrow \) Cityscapes and SYNTHIA \(\rightarrow \) Cityscapes. Code is available at ProCA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 15384–15394 (2021)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)
Gao, L., Zhang, L., Zhang, Q.: Addressing domain gap via content invariant representation for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 7528–7536 (2021)
Gu, Q., et al.: PIT: position-invariant transform for cross-FoV domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8761–8770 (2021)
Guo, X., Yang, C., Li, B., Yuan, Y.: MetaCorrection: domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3927–3936 (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)
Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation. arXiv preprint arXiv:1612.02649 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Huang, J., Lu, S., Guan, D., Zhang, X.: Contextual-relation consistent domain adaptation for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 705–722. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_42
Jiang, Z., Gao, P., Guo, C., Zhang, Q., Xiang, S., Pan, C.: Video object detection with locally-weighted deformable neighbors. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)
Jiang, Z., et al.: STC: spatio-temporal contrastive learning for video instance segmentation. arXiv preprint arXiv:2202.03747 (2022)
Jiang, Z., et al.: Learning where to focus for efficient video object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 18–34. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_2
Kim, M., Byun, H.: Learning texture invariant representation for domain adaptation of semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12975–12984 (2020)
Lee, S., Hyun, J., Seong, H., Kim, E.: Unsupervised domain adaptation for semantic segmentation by content transfer. arXiv preprint arXiv:2012.12545 (2020)
Li, S., et al.: Semantic distribution-aware contrastive adaptation for semantic segmentation. arXiv preprint arXiv:2105.05013 (2021)
Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6936–6945 (2019)
Liu, W., Ferstl, D., Schulter, S., Zebedin, L., Fua, P., Leistner, C.: Domain adaptation for semantic segmentation via patch-wise contrastive learning. arXiv preprint arXiv:2104.11056 (2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)
Luo, Y., Liu, P., Zheng, L., Guan, T., Yu, J., Yang, Y.: Category-level adversarial adaptation for semantic segmentation using purified features. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2507–2516 (2019)
Lv, F., Liang, T., Chen, X., Lin, G.: Cross-domain semantic segmentation via domain-invariant interactive relation transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4334–4343 (2020)
Marsden, R.A., Bartler, A., Döbler, M., Yang, B.: Contrastive learning and self-training for unsupervised domain adaptation in semantic segmentation. arXiv preprint arXiv:2105.02001 (2021)
Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 415–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_25
Murez, Z., Kolouri, S., Kriegman, D., Ramamoorthi, R., Kim, K.: Image to image translation for domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4500–4509 (2018)
Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.: Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3764–3773 (2020)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)
Paul, S., Tsai, Y.-H., Schulter, S., Roy-Chowdhury, A.K., Chandraker, M.: Domain adaptive semantic segmentation using weak labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 571–587. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_33
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)
Saporta, A., Vu, T.H., Cord, M., Pérez, P.: ESL: entropy-guided self-supervised learning for domain adaptation in semantic segmentation. arXiv preprint arXiv:2006.08658 (2020)
Subhani, M.N., Ali, M.: Learning from scale-invariant examples for domain adaptation in semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 290–306. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_18
Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 1379–1389 (2021)
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)
Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative patch representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1456–1465 (2019)
Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)
Wang, H., Shen, T., Zhang, W., Duan, L.-Y., Mei, T.: Classes matter: a fine-grained adversarial approach to cross-domain semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 642–659. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_38
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2020)
Wang, Y., Peng, J., Zhang, Z.: Uncertainty-aware pseudo label refinery for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9092–9101 (2021)
Xu, Q., et al.: DIRL: domain-invariant representation learning for generalizable semantic segmentation (2022)
Yu, F., Zhang, M., Dong, H., Hu, S., Dong, B., Zhang, L.: DAST: unsupervised domain adaptation in semantic segmentation based on discriminator attention and self-training. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10754–10762 (2021)
Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12414–12424 (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vision 129(4), 1106–1120 (2021)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)
Zhou, Q., et al.: Self-adversarial disentangling for specific domain adaptation. arXiv preprint arXiv:2108.03553 (2021)
Zhou, Q., Zhuang, C., Lu, X., Ma, L.: Domain adaptive semantic segmentation with regional contrastive consistency regularization. arXiv preprint arXiv:2110.05170 (2021)
Zhou, W., Wang, Y., Chu, J., Yang, J., Bai, X., Xu, Y.: Affinity space adaptation for semantic segmentation across domains. IEEE Trans. Image Process. 30, 2549–2561 (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, Z. et al. (2022). Prototypical Contrast Adaptation for Domain Adaptive Semantic Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-19830-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19829-8
Online ISBN: 978-3-031-19830-4
eBook Packages: Computer ScienceComputer Science (R0)