Abstract
Unsupervised Domain Adaptation (UDA) aims at reducing the domain gap between training and testing data and is, in most cases, carried out in offline manner. However, domain changes may occur continuously and unpredictably during deployment (e.g. sudden weather changes). In such conditions, deep neural networks witness dramatic drops in accuracy and offline adaptation may not be enough to contrast it. In this paper, we tackle Online Domain Adaptation (OnDA) for semantic segmentation. We design a pipeline that is robust to continuous domain shifts, either gradual or sudden, and we evaluate it in the case of rainy and foggy scenarios. Our experiments show that our framework can effectively adapt to new domains during deployment, while not being affected by catastrophic forgetting of the previous domains.
T. Panagiotakopoulos and L. Härenstam-Nielsen—Part of the work carried out while at Univrses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 41–48. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/1553374.1553380
Bobu, A., Hoffman, J., Tzeng, E., Darrell, T.: Adapting to continuously shifting domains. In: ICLR 2018 Workshop Program Chairs (2018). https://openreview.net/forum?id=BJsBjPJvf
Cardace, A., Zama Ramirez, P., Salti, S., Di Stefano, L.: Shallow features guide unsupervised domain adaptation for semantic segmentation at class boundaries. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1160–1170, January 2022
Chang, W.G., You, T., Seo, S., Kwak, S., Han, B.: Domain-specific batch normalization for unsupervised domain adaptation. CoRR (2019). http://arxiv.org/abs/1906.03950
Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 627–636 (2019)
Chen, L.-C., et al.: Naive-student: leveraging semi-supervised learning in video sequences for urban scene segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 695–714. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_40
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://doi.org/10.1109/tpami.2017.2699184, http://dx.doi.org/10.1109/TPAMI.2017.2699184
Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Wang, Y.C.F., Sun, M.: No more discrimination: cross city adaptation of road scene segmenters. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2011–2020. IEEE (2017). https://doi.org/10.1109/ICCV.2017.220, http://ieeexplore.ieee.org/document/8237482/
Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional alignment. CoRR (2019). http://arxiv.org/abs/1905.10885
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding (2016)
Dundar, A., Liu, M.Y., Yu, Z., Wang, T.C., Zedlewski, J., Kautz, J.: Domain stylization: a fast covariance matching framework towards domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. p. 1 (2020). https://doi.org/10.1109/TPAMI.2020.2969421
Furlanello, T., Lipton, Z., Tschannen, M., Itti, L., Anandkumar, A.: Born again neural networks. In: International Conference on Machine Learning, pp. 1607–1616. PMLR (2018)
Ganin, Y., et al.: Domain-adversarial training of neural networks. The J. Mach. Learn. Res. 17(1), 2030–2096 (2016)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385
Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1989–1998. PMLR, Stockholmsmässan, Stockholm Sweden, 10–15 July 2018
Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation. CoRR (2016). http://arxiv.org/abs/1612.02649
Hoyer, L., Dai, D., Van Gool, L.: Daformer: improving network architectures and training strategies for domain-adaptive semantic segmentation. arXiv preprint arXiv:2111.14887 (2021)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain generalization. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021)
Kim, M., Byun, H.: Learning texture invariant representation for domain adaptation of semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. https://doi.org/10.1109/cvpr42600.2020.01299
Klingner, M., Termöhlen, J.A., Ritterbach, J., Fingscheidt, T.: Unsupervised batchnorm adaptation (UBNA): a domain adaptation method for semantic segmentation without using source domain representations. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 210–220 (2022)
Kuznietsov, Y., Proesmans, M., Van Gool, L.: Towards unsupervised online domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 261–271 (2022)
Lao, Q., Jiang, X., Havaei, M., Bengio, Y.: Continuous domain adaptation with variational domain-agnostic feature replay. arXiv preprint arXiv:2003.04382 (2020)
Lee, D.: Pseudo-label : the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML (2013)
Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2019. https://doi.org/10.1109/cvpr.2019.00710
Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. CoRR (2020). http://arxiv.org/abs/2002.08546
Liu, Y., Zhang, W., Wang, J.: Source-free domain adaptation for semantic segmentation (2021). http://arxiv.org/abs/2103.16372
Liu, Y., Kothari, P., van Delft, B.G., Bellot-Gurlet, B., Mordan, T., Alahi, A.: TTT++: when does self-supervised test-time training fail or thrive? In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021)
Liu, Z., et al.: Open compound domain adaptation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12403–12412. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.01242, https://ieeexplore.ieee.org/document/9157145/
Mei, K., Zhu, C., Zou, J., Zhang, S.: Instance adaptive self-training for unsupervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 415–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_25
Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.: Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. https://doi.org/10.1109/cvpr42600.2020.00382
Poularikas, A.D.: The Handbook of Formulas and Tables for Signal Processing. The electrical engineering handbook series, CRC Press; Springer: IEEE Press (1999)
Sakaridis, C., Dai, D., Hecker, S., Van Gool, L.: Model adaptation with synthetic and real data for semantic dense foggy scene understanding (2018). http://arxiv.org/abs/1808.01265
Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. CoRR abs/2001.07685 (2020). https://arxiv.org/abs/2001.07685
Stan, S., Rostami, M.: Unsupervised model adaptation for continual semantic segmentation. In: AAAI (2021)
Su, P., Tang, S., Gao, P., Qiu, D., Zhao, N., Wang, X.: Gradient regularized contrastive learning for continual domain adaptation (2020). http://arxiv.org/abs/2007.12942
Sun, T., et al.: SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation. In: Computer Vision and Pattern Recognition (2022)
Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., Stefano, L.D.: Real-time self-adaptive deep stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 195–204 (2019)
Tremblay, M., Halder, S.S., de Charette, R., Lalonde, J.-F.: Rain rendering for evaluating and improving robustness to bad weather. Int. J. Comput. Vision 1–20 (2020). https://doi.org/10.1007/s11263-020-01366-3
Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2018. https://doi.org/10.1109/cvpr.2018.00780
Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Dada: depth-aware domain adaptation in semantic segmentation. In: ICCV (2019)
Vu, T.H., Jain, H., Bucher, M., Cord, M., Perez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. https://doi.org/10.1109/cvpr.2019.00262
Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation (2019) http://arxiv.org/abs/1811.12833
Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. In: International Conference on Learning Representations (2021)
Wang, H., Shen, T., Zhang, W., Duan, L., Mei, T.: Classes matter: a fine-grained adversarial approach to cross-domain semantic segmentation. In: The European Conference on Computer Vision (ECCV), August 2020
Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., Bailey, J.: Symmetric cross entropy for robust learning with noisy labels (2019). http://arxiv.org/abs/1908.06112
Wu, Z., et al.: DCAN: dual channel-wise alignment networks for unsupervised scene adaptation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 535–552. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_32
Wu, Z., Wang, X., Gonzalez, J., Goldstein, T., Davis, L.: ACE: adapting to changing environments for semantic segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2121–2130. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00221, https://ieeexplore.ieee.org/document/9009823/
Wulfmeier, M., Bewley, A., Posner, I.: Incremental adversarial domain adaptation for continually changing environments (2018). http://arxiv.org/abs/1712.07436
Yang, Y., Soatto, S.: FDA: fourier domain adaptation for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4084–4094. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00414, https://ieeexplore.ieee.org/document/9157228/
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: bilateral segmentation network for real-time semantic segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 325–341 (2018)
Yuan, Y., Chen, X., Chen, X., Wang, J.: Segmentation transformer: object-contextual representations for semantic segmentation. In: European Conference on Computer Vision (ECCV), vol. 1 (2021)
Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4L: self-supervised semi-Supervised Learning. arXiv e-prints arXiv:1905.03670, May 2019
Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation (2021). http://arxiv.org/abs/2101.10979
Zhang, Q., Zhang, J., Liu, W., Tao, D.: Category anchor-guided unsupervised domain adaptation for semantic segmentation. Adv. Neural Inf. Process. Syst. (2019). http://arxiv.org/abs/1910.13049
Zheng, Z., Yang, Y.: Unsupervised scene adaptation with memory regularization in vivo. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, July 2020. https://doi.org/10.24963/ijcai.2020/150, http://dx.doi.org/10.24963/ijcai.2020/150
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), October 2017. https://doi.org/10.1109/iccv.2017.244
Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 289–305 (2018)
Zou, Y., Yu, Z., Liu, X., Kumar, B.V.K.V., Wang, J.: Confidence regularized self-training. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019. https://doi.org/10.1109/iccv.2019.00608
Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)
Acknowledgement
The authors thank Hossein Azizpour, Hedvig Kjellström and Raoul de Charette for the helpful discussions and guidance.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Panagiotakopoulos, T., Dovesi, P.L., Härenstam-Nielsen, L., Poggi, M. (2022). Online Domain Adaptation for Semantic Segmentation in Ever-Changing Conditions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-19830-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19829-8
Online ISBN: 978-3-031-19830-4
eBook Packages: Computer ScienceComputer Science (R0)