Abstract
Dominant pre-training work for video-text retrieval mainly adopt the “dual-encoder” architectures to enable efficient retrieval, where two separate encoders are used to contrast global video and text representations, but ignore detailed local semantics. The recent success of image BERT pre-training with masked visual modeling that promotes the learning of local visual context, motivates a possible solution to address the above limitation. In this work, we for the first time investigate masked visual modeling in video-text pre-training with the “dual-encoder” architecture. We perform Masked visual modeling with Injected LanguagE Semantics (MILES) by employing an extra snapshot video encoder as an evolving “tokenizer” to produce reconstruction targets for masked video patch prediction. Given the corrupted video, the video encoder is trained to recover text-aligned features of the masked patches via reasoning with the visible regions along the spatial and temporal dimensions, which enhances the discriminativeness of local visual features and the fine-grained cross-modality alignment. Our method outperforms state-of-the-art methods for text-to-video retrieval on four datasets with both zero-shot and fine-tune evaluation protocols. Our approach also surpasses the baseline models significantly on zero-shot action recognition, which can be cast as video-to-text retrieval.
Y. Ge—Work done during internship in ARC Lab, Tencent PCG.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Akbari, H., et al.: VATT: transformers for multimodal self-supervised learning from raw video, audio and text. arXiv preprint arXiv:2104.11178 (2021)
Alayrac, J.-B., et al.: Self-supervised multimodal versatile networks. NeurIPS 2(6), 7 (2020)
Alwassel, H., Mahajan, D., Korbar, B., Torresani, L., Ghanem, B., Tran, D.: Self-supervised learning by cross-modal audio-video clustering. In: NeurIPS 2020 (2020)
Amrani, E., Ben-Ari, R., Rotman, D., Bronstein, A.: Noise estimation using density estimation for self-supervised multimodal learning. In: AAAI, vol. 35, pp. 6644–6652 (2021)
Hendricks, L.A., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: ICCV, pp. 5803–5812 (2017)
Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval (2021)
Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image transformers. In: ICLR (2022)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding. arXiv preprint arXiv:2102.05095 (2021)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)
Chen, B., et al.: Multimodal clustering networks for self-supervised learning from unlabeled videos. arXiv preprint arXiv:2104.12671 (2021)
Chen, D., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: ACL, pp. 190–200 (2011)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)
Dong, X., et al.: PeCo: perceptual codebook for BERT pre-training of vision transformers. arXiv preprint arXiv:2111.12710 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2020)
Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13
Ge, Y., et al.: Bridging video-text retrieval with multiple choice questions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16167–16176 (2022)
Ghadiyaram, D., Tran, D., Mahajan, D.: Large-scale weakly-supervised pre-training for video action recognition. In: CVPR, pp. 12046–12055 (2019)
Ging, S., Zolfaghari, M., Pirsiavash, H., Brox, T.: COOT: cooperative hierarchical transformer for video-text representation learning. In: NeurIPS (2020)
Han, T., Xie, W., Zisserman, A.: Memory-augmented dense predictive coding for video representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 312–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_19
Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representation learning. In: NeurIPS, vol. 33, pp. 5679–5690 (2020)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Huo, Y., et al.: Compressed video contrastive learning. In: NeurIPS, vol. 34 (2021)
Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410 (2016)
Kong, Q., Wei, W., Yoshinaga, T., Deng, Z., Murakami, T.: Cycle-contrast for self-supervised video representation learning (2020)
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556–2563. IEEE (2011)
Lei, J., et al.: Less is more: ClipBERT for video-and-language learning via sparse sampling. In: CVPR, pp. 7331–7341 (2021)
Li, L., Chen, Y.-C., Cheng, Y., Gan, Z., Yu, L., Liu, J.: HERO: hierarchical encoder for video+ language omni-representation pre-training. In: EMNLP, pp. 2046–2065 (2020)
Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: video retrieval using representations from collaborative experts. arXiv preprint arXiv:1907.13487 (2019)
Luo, H., et al.: UniVL: a unified video and language pre-training model for multimodal understanding and generation. arXiv preprint arXiv:2002.06353 (2020)
Miech, A., Alayrac, J.-B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: CVPR, pp. 9879–9889 (2020)
Miech, A., Zhukov, D., Alayrac, J.-B., Tapaswi, M., Laptev, I., Sivic, J.: Howto100m: learning a text-video embedding by watching hundred million narrated video clips. In: ICCV, pp. 2630–2640 (2019)
van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Pan, J., Lin, Z., Zhu, X., Shao, J., Li, H.: Parameter-efficient image-to-video transfer learning. arXiv preprint arXiv:2206.13559 (2022)
Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: ICLR (2020)
Piergiovanni, A.J., Angelova, A., Ryoo, M.S.: Evolving losses for unsupervised video representation learning. In: CVPR, pp. 133–142 (2020)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML (2021)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28 (2015)
Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: CVPR, pp. 3202–3212 (2015)
Rouditchenko, A., et al. AVLNet: learning audio-visual language representations from instructional videos. arXiv preprint arXiv:2006.09199 (2020)
Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL, pp. 2556–2565 (2018)
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Sun, C., Baradel, F., Murphy, K., Schmid, C.: Learning video representations using contrastive bidirectional transformer. arXiv preprint arXiv:1906.05743 (2019)
Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: a joint model for video and language representation learning. In: ICCV, pp. 7464–7473 (2019)
Tong, Z., Song, Y., Wang, J., Wang, L.: VideoMAE: masked autoencoders are data-efficient learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602 (2022)
Wang, J., et al.: Object-aware video-language pre-training for retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3313–3322 (2022)
Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19
Xu, H., et al.: VLM: task-agnostic video-language model pre-training for video understanding. arXiv preprint arXiv:2105.09996 (2021)
Xu, H., et al.: VideoClip: contrastive pre-training for zero-shot video-text understanding. arXiv preprint arXiv:2109.14084 (2021)
Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: CVPR, pp. 5288–5296 (2016)
Yang, J., Bisk, Y., Gao, J.: TACO: token-aware cascade contrastive learning for video-text alignment. In: ICCV, pp. 11562–11572 (2021)
Zhou, J., et al.: iBOT: image BERT pre-training with online tokenizer. In: ICLR (2022)
Zhu, L., Yang, Y.: ActBERT: learning global-local video-text representations. In: CVPR, pp. 8746–8755 (2020)
Acknowledgement
Ping Luo is supported by the General Research Fund of HK No. 27208720, No. 17212120, and No. 17200622.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ge, Y. et al. (2022). MILES: Visual BERT Pre-training with Injected Language Semantics for Video-Text Retrieval. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-19833-5_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19832-8
Online ISBN: 978-3-031-19833-5
eBook Packages: Computer ScienceComputer Science (R0)