Skip to main content

MILES: Visual BERT Pre-training with Injected Language Semantics for Video-Text Retrieval

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13695))

Included in the following conference series:

Abstract

Dominant pre-training work for video-text retrieval mainly adopt the “dual-encoder” architectures to enable efficient retrieval, where two separate encoders are used to contrast global video and text representations, but ignore detailed local semantics. The recent success of image BERT pre-training with masked visual modeling that promotes the learning of local visual context, motivates a possible solution to address the above limitation. In this work, we for the first time investigate masked visual modeling in video-text pre-training with the “dual-encoder” architecture. We perform Masked visual modeling with Injected LanguagE Semantics (MILES) by employing an extra snapshot video encoder as an evolving “tokenizer” to produce reconstruction targets for masked video patch prediction. Given the corrupted video, the video encoder is trained to recover text-aligned features of the masked patches via reasoning with the visible regions along the spatial and temporal dimensions, which enhances the discriminativeness of local visual features and the fine-grained cross-modality alignment. Our method outperforms state-of-the-art methods for text-to-video retrieval on four datasets with both zero-shot and fine-tune evaluation protocols. Our approach also surpasses the baseline models significantly on zero-shot action recognition, which can be cast as video-to-text retrieval.

Y. Ge—Work done during internship in ARC Lab, Tencent PCG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbari, H., et al.: VATT: transformers for multimodal self-supervised learning from raw video, audio and text. arXiv preprint arXiv:2104.11178 (2021)

  2. Alayrac, J.-B., et al.: Self-supervised multimodal versatile networks. NeurIPS 2(6), 7 (2020)

    Google Scholar 

  3. Alwassel, H., Mahajan, D., Korbar, B., Torresani, L., Ghanem, B., Tran, D.: Self-supervised learning by cross-modal audio-video clustering. In: NeurIPS 2020 (2020)

    Google Scholar 

  4. Amrani, E., Ben-Ari, R., Rotman, D., Bronstein, A.: Noise estimation using density estimation for self-supervised multimodal learning. In: AAAI, vol. 35, pp. 6644–6652 (2021)

    Google Scholar 

  5. Hendricks, L.A., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: ICCV, pp. 5803–5812 (2017)

    Google Scholar 

  6. Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval (2021)

    Google Scholar 

  7. Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image transformers. In: ICLR (2022)

    Google Scholar 

  8. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding. arXiv preprint arXiv:2102.05095 (2021)

  9. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650–9660 (2021)

    Google Scholar 

  10. Chen, B., et al.: Multimodal clustering networks for self-supervised learning from unlabeled videos. arXiv preprint arXiv:2104.12671 (2021)

  11. Chen, D., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: ACL, pp. 190–200 (2011)

    Google Scholar 

  12. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  13. Dong, X., et al.: PeCo: perceptual codebook for BERT pre-training of vision transformers. arXiv preprint arXiv:2111.12710 (2021)

  14. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2020)

    Google Scholar 

  15. Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13

    Chapter  Google Scholar 

  16. Ge, Y., et al.: Bridging video-text retrieval with multiple choice questions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16167–16176 (2022)

    Google Scholar 

  17. Ghadiyaram, D., Tran, D., Mahajan, D.: Large-scale weakly-supervised pre-training for video action recognition. In: CVPR, pp. 12046–12055 (2019)

    Google Scholar 

  18. Ging, S., Zolfaghari, M., Pirsiavash, H., Brox, T.: COOT: cooperative hierarchical transformer for video-text representation learning. In: NeurIPS (2020)

    Google Scholar 

  19. Han, T., Xie, W., Zisserman, A.: Memory-augmented dense predictive coding for video representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 312–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_19

    Chapter  Google Scholar 

  20. Han, T., Xie, W., Zisserman, A.: Self-supervised co-training for video representation learning. In: NeurIPS, vol. 33, pp. 5679–5690 (2020)

    Google Scholar 

  21. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  22. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  23. Huo, Y., et al.: Compressed video contrastive learning. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  24. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., Wu, Y.: Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410 (2016)

  25. Kong, Q., Wei, W., Yoshinaga, T., Deng, Z., Murakami, T.: Cycle-contrast for self-supervised video representation learning (2020)

    Google Scholar 

  26. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  27. Lei, J., et al.: Less is more: ClipBERT for video-and-language learning via sparse sampling. In: CVPR, pp. 7331–7341 (2021)

    Google Scholar 

  28. Li, L., Chen, Y.-C., Cheng, Y., Gan, Z., Yu, L., Liu, J.: HERO: hierarchical encoder for video+ language omni-representation pre-training. In: EMNLP, pp. 2046–2065 (2020)

    Google Scholar 

  29. Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: video retrieval using representations from collaborative experts. arXiv preprint arXiv:1907.13487 (2019)

  30. Luo, H., et al.: UniVL: a unified video and language pre-training model for multimodal understanding and generation. arXiv preprint arXiv:2002.06353 (2020)

  31. Miech, A., Alayrac, J.-B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: CVPR, pp. 9879–9889 (2020)

    Google Scholar 

  32. Miech, A., Zhukov, D., Alayrac, J.-B., Tapaswi, M., Laptev, I., Sivic, J.: Howto100m: learning a text-video embedding by watching hundred million narrated video clips. In: ICCV, pp. 2630–2640 (2019)

    Google Scholar 

  33. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  34. Pan, J., Lin, Z., Zhu, X., Shao, J., Li, H.: Parameter-efficient image-to-video transfer learning. arXiv preprint arXiv:2206.13559 (2022)

  35. Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: ICLR (2020)

    Google Scholar 

  36. Piergiovanni, A.J., Angelova, A., Ryoo, M.S.: Evolving losses for unsupervised video representation learning. In: CVPR, pp. 133–142 (2020)

    Google Scholar 

  37. Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)

  38. Ramesh, A., et al.: Zero-shot text-to-image generation. In: ICML (2021)

    Google Scholar 

  39. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS, vol. 28 (2015)

    Google Scholar 

  40. Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: CVPR, pp. 3202–3212 (2015)

    Google Scholar 

  41. Rouditchenko, A., et al. AVLNet: learning audio-visual language representations from instructional videos. arXiv preprint arXiv:2006.09199 (2020)

  42. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  43. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL, pp. 2556–2565 (2018)

    Google Scholar 

  44. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  45. Sun, C., Baradel, F., Murphy, K., Schmid, C.: Learning video representations using contrastive bidirectional transformer. arXiv preprint arXiv:1906.05743 (2019)

  46. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: VideoBERT: a joint model for video and language representation learning. In: ICCV, pp. 7464–7473 (2019)

    Google Scholar 

  47. Tong, Z., Song, Y., Wang, J., Wang, L.: VideoMAE: masked autoencoders are data-efficient learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602 (2022)

  48. Wang, J., et al.: Object-aware video-language pre-training for retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3313–3322 (2022)

    Google Scholar 

  49. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_19

    Chapter  Google Scholar 

  50. Xu, H., et al.: VLM: task-agnostic video-language model pre-training for video understanding. arXiv preprint arXiv:2105.09996 (2021)

  51. Xu, H., et al.: VideoClip: contrastive pre-training for zero-shot video-text understanding. arXiv preprint arXiv:2109.14084 (2021)

  52. Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: CVPR, pp. 5288–5296 (2016)

    Google Scholar 

  53. Yang, J., Bisk, Y., Gao, J.: TACO: token-aware cascade contrastive learning for video-text alignment. In: ICCV, pp. 11562–11572 (2021)

    Google Scholar 

  54. Zhou, J., et al.: iBOT: image BERT pre-training with online tokenizer. In: ICLR (2022)

    Google Scholar 

  55. Zhu, L., Yang, Y.: ActBERT: learning global-local video-text representations. In: CVPR, pp. 8746–8755 (2020)

    Google Scholar 

Download references

Acknowledgement

Ping Luo is supported by the General Research Fund of HK No. 27208720, No. 17212120, and No. 17200622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Luo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 601 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, Y. et al. (2022). MILES: Visual BERT Pre-training with Injected Language Semantics for Video-Text Retrieval. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics