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Abstract. Previous harmonization methods focus on adjusting one in-
harmonious region in an image based on an input mask. They may face
problems when dealing with different perturbations on different semantic
regions without available input masks. To deal with the problem that one
image has been pasted with several foregrounds coming from different im-
ages and needs to harmonize them towards different domain directions
without any mask as input, we propose a new semantic-guided multi-
mask image harmonization task. Different from the previous single-mask
image harmonization task, each inharmonious image is perturbed with
different methods according to the semantic segmentation masks. Two
challenging benchmarks, HScene and HLIP, are constructed based on
150 and 19 semantic classes, respectively. Furthermore, previous base-
lines focus on regressing the exact value for each pixel of the harmo-
nized images. The generated results are in the ‘black box’ and cannot be
edited. In this work, we propose a novel way to edit the inharmonious
images by predicting a series of operator masks. The masks indicate
the level and the position to apply a certain image editing operation,
which could be the brightness, the saturation, and the color in a spe-
cific dimension. The operator masks provide more flexibility for users
to edit the image further. Extensive experiments verify that the op-
erator mask-based network can further improve those state-of-the-art
methods which directly regress RGB images when the perturbations are
structural. Experiments have been conducted on our constructed bench-
marks to verify that our proposed operator mask-based framework can
locate and modify the inharmonious regions in more complex scenes.
Our code and models are available at https://github.com/XuqianRen/
Semantic-guided-Multi-mask-Image-Harmonization.git.
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1 Introduction

Image editing techniques play a more crucial role in our daily life. They have
been widely used in advertisement propaganda, social media sharing, and digital
entertainment. Furthermore, with the rapid expansion of electronic devices and
image processing applications, such as PhotoShop and MeituPic, image compo-
sition has become a more accessible technique. However, without professional
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photo-editing experience, a fake composited image will have lower evaluation
credibility due to its inharmonious color, texture, or illumination. Thus, image
harmonization is an imperative process to improve composite image quality.

Previous image harmonization aims to improve the quality of image compo-
sition by matching the appearance between a pre-defined foreground region and
background to make the whole composited image more realistic. The adjusted
appearance can be color, brightness, contrast, etc. Deep-learning based meth-
ods [3,2] usually handle this task as an image-to-image translation task [8,14].
These methods have two limitations. First, these networks focus on the problem
that one composite image only has one inharmonious region to change and do not
consider the situation that the composite image may have multi-inharmonious
regions with different kinds of perturbations but without masks to indicate. In
a real application, the user may cut out the portraits from different photos and
paste them on the same background. Second, the generated result is not explain-
able and editable, which is not flexible for users to further edit if they do not
like the results generated by the automation output.

To solve these drawbacks, we propose a new setting named Semantic-guided
Multi-Mask Image Harmonization(Sg-MMH), which aims to adjust the inharmo-
nious regions according to their semantics. We construct two new benchmarks,
named HScene and HLIP, which originated from public semantic segmentation
datasets ADE20K [29] and LIP [5], separately. For each image, we randomly
select several masks with different semantics to apply the perturbations. For the
HScene, we focus on harmonizing various things and stuff in natural scenes, such
as houses, lawns, and animals. And for the HLIP, we pay attention to adjusting
the body parts and clothes of a person.

To realize the perturbation, we use Instagram filters, LAB perturb methods,
blur perturbations to enrich disturbance scenarios, and apply different perturb
functions to different regions randomly. That means the framework needs to
harmonize the foreground regions towards different domains, which is a more
challenging task.

Furthermore, we propose a new framework that can generate Operator Masks.
Different from previous works that directly regress RGB images, we choose to
generate operator masks for some pre-defined operators. These operator masks
can simulate the manipulation functions in the image processing software. In this
work, we define six feasible operator masks, and we multiply and add every two
masks to each L, A, and B channel of inharmonious input images. Hence, each
mask can be seen as an operation that can change the illumination, contrast, or
color. The mask location indicates where to apply the operation, and the value
of each pixel can be seen as the level each function is acted. The final generated
mask is also editable and explainable, and it can locate the inharmonious region
automatically. Our framework can be applied to any off-the-shelf backbones to
adapt them to our task and make their output editable.

We summarize our contributions in three-fold:

• We propose a new setting that aims to simulate the situation that the fore-
grounds come from different images and need to be harmonized towards
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different domains. We propose two benchmarks, HScene and HLIP, to rep-
resent the scenery and person harmonization task separately. To enrich the
training set, we perturb several foreground images with multiple semantic-
guided masks on the fly.

• We propose a new framework to generate operator masks to simulate image
editing operations in image processing software to harmonize images instead
of generating each pixel separately in the training process. The masks indi-
cate the level and the position to apply a certain operation, which could be
the brightness, the saturation, and the color in a specific dimension.

• Quantitative and qualitative comparisons demonstrate that the proposed
operator mask-based network can have a reasonable result on our multi-mask
image harmonization benchmarks. It can also provide more explainable and
editable outputs for further change.

2 Related Works

Image harmonization: Traditional image harmonization methods concentrated
on learning and adjusting statistical appearance between hand-crafted heuris-
tics appearance features, such as [18,20,1,10,17,22,21]. Some of them have been
adapted to image editing software. However, these methods are not very reliable
when dealing with more complex situations. Recently several CNN networks
started to use learning methods to make the harmonized image more reason-
able. Zhu et al. [30] trained a discriminative model to rank the composite images
according to their realism level and optimized the model by maximizing the out-
put visual realism score. DIH [23] proposed the first end-to-end CNN network
to produce harmonized images with auxiliary semantics prediction.

Since the remarkable effect of GAN in image-to-image translation [8,15,31],
some GAN frameworks have also been proposed to facilitate image harmoniza-
tion. S2AM [4] considered the harmonization task as just changing the fore-
ground appearance by keeping semantic information. So it used channel-wise
and spatial-wise attention mechanisms to focus on the appearance changes in the
foreground mask region. DoveNet [3] further conceived the image harmonization
task as a domain transfer problem and hypothesized that the foreground and
background of an inharmonious image are captured in different conditions. So,
they chose to select the foreground objects in the datasets and perturbed their
color or illumination to simulate an inharmonious composite, and trained the
network to regress close to the original input image in a GAN framework with a
domain verification discriminator. This is a good start to deeply researching har-
monization tasks with a large dataset. Other methods also re-defined the image
harmonization task to make this task more practical. BarginNet [2] formulated
image harmonization as background-guided domain translation. They used a
domain code extractor to extract foreground and background domain code and
use background domain code to guide the foreground domain during translation.
RainNet [13] treated image harmonization as a style transfer problem and ex-
tracted background style information, and applied it to the foreground. D-HT [6]
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used the strong power of Transformer to model long-range context information
to perceive information for better harmonization. These methods all consider
that only one foreground inharmonious region needs to be edited and directly
generate and regress each pixel towards the target, which lacks interpretability.
Instead, in our work, we resolve the image harmonization task using preset im-
age editing operations to edit the inharmonious images. Specifically, we predict
a series of operator masks to be applied to the inharmonious input. To tackle our
proposed setting, we construct two benchmarks with semantic-guided perturbed
regions that need to be adjusted in one composite image.

Photo retouch: Photo Retouch aims to learn an automatic network to cor-
rect a raw image to a destinate expert-retouched one to enhance image quality.
UEGAN [16] learned in an unsupervised fashion to realize image-to-image map-
ping. Deep Preset [7] realized color transfer by predicting various presets in a
labeled reference photo and applied them to another image to blend and retouch
a photo. Their filters are supervised and preset, however, in our framework, our
filters are unsupervised and we only supervise the final harmonization output, so
the filter style is not static and can be defined by users. Inspired by Deep Preset,
we predict operator masks for pre-defined operations implicitly. The network can
predict the position and level that each operation is applied to the picture and
generate operator masks to simulate the manipulations.

3 Methods

3.1 Overview

Most image harmonization tasks try to solve the problem that a composite image
comes from two pictures captured in different situations, which is a simple scene
in image composition. In a more general case in our daily life, users may paste
several foregrounds to one background image to make the picture meet their ex-
pectations. For example, users may cut the picture of a skirt from one picture, cut
the picture of a hat from another picture, and then stick them to their portrait
image. In this situation, the composite image needs to be changed in different
directions to adjust the whole foreground harmonious with the background por-
trait. So in order to solve the problem, we propose a new setting to simulate this
situation, named Semantic-guided Multi-Mask Image Harmonization(Sg-MMH)
task, and construct two benchmarks, HScene and HLIP, for this task.

As shown in Figure 1, our framework includes one generator, which contains
an encoder-decoder structure and a retoucher, and a patch discriminator. First,
the inharmonious image Ic is the input of our operator mask generator. Ic can be
generated by perturbing selected regions according to the semantics of a natural
or person image I as described in Section 3.2. The encoder in the generator
can locate the inharmonious region automatically. The decoder aims to predict
the operator masks according to the gap between the inharmonious region and
natural image distributions. These two structures can be implemented by any off-
the-shelf backbone used in image harmonization tasks in previous research, such
as [3,2,13,6]. The output operator masks from the decoder will pass a retouch
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Fig. 1: This image shows the training pipeline of our framework. We first gen-
erate a composited image Ic guided by multiple semantic masks M from the
original real image I, serving as the input image. The encode-decode structure
generates operator masks. Then the operator masks OM will be used to retouch
the composited image Ic and formulate Ih. The discriminator will compare Ih
and I to make the output Ih harmonious.

module, in which the predefined operators are applied to Ic according to the
predicted locations and levels to harmonize the composited image Ic and generate
a harmonious image Ih. We supervised the network by minimizing the difference
between Ih and the ground truth harmonious image I. A binary regression loss
(LChar) and a perceptual loss (LLpips) will be applied to train the model and
will be further introduced in Section 3.4. The discriminator we use is a patch
discriminator. In this way, we force the discriminator to focus on some tiny
objects and details.

In the following sections, we will first introduce how we construct our bench-
marks and gradually illustrate the detailed structure of our framework and loss
functions.

3.2 Multi-Mask Image Harmonization

We define a new task called Semantic-guided Multi-mask Image Harmonization
(Sg-MMH). The input is a composited image in which foregrounds are pasted
from different pictures, and the background is another real image. The output is
a harmonious image in which the foregrounds have been adjusted to the back-
ground.

We build two benchmarks, HScene and HLIP. And their foregrounds have
been perturbed according to their semantics. The details are as follows:

HScene: The harmonized images and the semantic masks of HScene are from
ADE20K Dataset. ADE20K Dataset [28,29] consists of natural images with high
accuracy pixel level human annotations. There are 150 semantic classes, such as
animals, bulidings, sky, trees, etc. There are 20k/2k/30k images in the training/
validation/ testing set. Since the ground truth semantic label of the testing set
is not released, we use the total images in the train set to construct our train
set and use the validation set as our test set, and neglect some images with no
foreground to construct HScene.
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HLIP: HLIP constructed on the basis of The Look into Person(LIP) dataset,
which is a large-scale dataset that focuses on the semantic understanding of a
person. It contains 50462 images with elaborated pixel-wise annotations of 19
semantic human part labels, such as dress, coat, hair and face. The original train-
ing set contains 30462 images, and the validation images contain 10k pictures.
Since the images contain poses, views, occlusions, appearances, and resolution
variations, they can simulate real-world portrait scenarios. To construct HLIP,
we also perturb the original train set as our training set, perturb the validation
set as our test set, and neglect some images without proper foreground.

The statistics of training and testing images in the original datasets and our
two constructed benchmarks are shown in Table 1.

Table 1: The statistics of the original datasets and our two constructed bench-
marks.

Benchmark name ADE20K LIP HScene HLIP

Training set 20210 30462 20196 30385

Testing set 2000 10000 2000 9972

Previous works often use fixed fake foregrounds during training. So in this
work, we randomly select 0.2×len(classes)+1 perturb regions as the foreground
and disturb them with several structural perturbations. The classes number de-
pends on the total semantic regions in each image. First, we mainly use Instagram
filters[19], which is a set of camera filters usually used in image-editing software.
We implement them by a python API called pilgram. Here we use the total of
23 Instagram filters and randomly select one to perturb one region. Meanwhile,
we superimpose a filter from pilgram.css to each region with a probability of 0.5.
So in each benchmark, we apply different disturbations to multiple regions ran-
domly. These Instagram filters can represent most of the common filters in image
processing applications, and most of them can change the color, illumination,
and saturation of the foreground structurally. Second, to enrich the perturbation
methods, we also add some other perturb methods to add more scenarios. One
is to simulate the situation that a high-resolution foreground is pasted on a low-
resolution background. The blurring process is conducted by using several blur
or noise methods, which are usually used in image super-resolution tasks to blur
the real image I and the background of Ic, and try to regress the network to blur
the foreground and make the resolution of the whole image consistent. We use
Gaussian noise, Laplace noise, Poisson noise, motion blur, and jpeg compression
function and randomly select one blur method if blur perturbation is chosen.
The other additional perturb method is to randomly multiply a number l, a, b
to each channel of the LAB version of Ic as the following equation to add more
structural perturbations.

Ici = Ici × i, i = (l, a, b) (1)
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Some samples of our benchmarks have been shown in Figure 2. In this way,
we want to simulate some structured perturb situation in which one region can
be learned linearly in the same direction and at the same level. The reason we
want to focus on this situation is that many changes in nature can be achieved
by overall linear migration on a single meaningful channel, such as illumination
change. So this situation is more suitable to operator masks format for they
can change the appearance of one region in one direction centralized. Therefore,
we have different foregrounds and perturb functions every iteration, and the
network needs to regress the multi-mask region in a different direction, which
adds variability and complexity to each training pair.

HLIP

HScene

Real Comp Mask Real Comp Mask

Fig. 2: Here we show some perturb visualization of our benchmarks. The first line
shows samples from HScene, and the second line shows examples from HLIP. We
can see that the foreground color, illumination, and contrast can be changed.

3.3 Framework Structure

We first use the U-Net structure from DoveNet [3] in there to illustrate our frame-
work. It should be noted that the backbone can be replaced with any other more
complex structures to boost the performance further. With our framework, the
results generated in the form of operator masks are more editable and explain-
able. To make the fair comparison with DoveNet [3], we replace the input of the
generator as Ic by removing the foreground masks, and the output of the decoder
is operator masks, which its location can indicate where needs to change, and the
value can represent what level needs to be changed. These operator masks could
be pre-defined as certain functions and will be used to edit the inharmonious
image in a Retoucher module.

Retoucher: The operator masks will be passed into a retouch module to
harmonize Ic. The retouch module has some preset operations which users can
define. Here we employ several simple but effective preset methods. Here we
show an example. We first split Ic to L, A, and B channels. Then, we generate
six operator masks: OMimul

, OMiadd
, i = (l, a, b), and each will be multiplied or
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added to each L, A, B channel of the image Ic, to generate Ih, as described in
the following equation,

Ihi
= Ici �OMimul

⊕OMiadd
, i = (l, a, b) (2)

where ”�” represents the Hadamard product operation and ”⊕” represents
the Hadamard add operation. It should be noted that other forms of retouch
can also be used, and the type of the pre-defined operator can be set according
to different applications or dataset volume.

Patch discriminator: In our task, not only do the global features need to
be discriminated, but accurate gradient feedback for local details also needs to
be produced. Therefore, we employ a patch discriminator [8,9] in our framework,
which has a fixed receptive field, and each output value of the discriminator is
only related to the local fixed area. Therefore, we want the discriminator to focus
on some tiny objects and local details in the image. The final loss is the average
of all local losses to guarantee global consistency [9].

3.4 Loss functions

We use four type losses in our framework:

• We apply a binary Charbonnier loss [12] to directly minimize the distance
between our final output Ih and the ground truth I as:

LChar =
1

N

N∑

i=1

√
(Ii − Ihi)

2
+ ε2, (3)

where N is the batch size, ε is a very small constant in order to stabilize the
value.

• In order to enhance the contextual details, we employ perceptual loss LPIPS[11]:

LLpips = LPIPS(Î , Ih) (4)

• Different from standard discriminator loss, we use a relativistic discriminator
loss and try to maximize the probability that a real image is relatively more
realistic than a fake one [25]. The discriminator loss is defined as:

LD =− EI [log (D (I, Ih))]

− EIn [log (1−D (Ih, I))]

D (I, Ih) =σ (C(I)− E [C (Ih)])→ 1

D (Ih, I) =σ (C (Ih)− E[C(I)])→ 0

(5)

σ is the sigmoid activation layer, and C(x) is the output of the discrimina-
tor [25]. EIh [·] represents the final loss is averaged on the batch-level [25].

• The adversarial loss for the generator is as following [25]:

LG = −EI [log (1−D (I, Ih))]− EIh [log (D (Ih, I))] (6)

In this way, the generator benefits from the gradients from both outputs
harmonized image and real image in adversarial training.
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Finally, our total loss function used for the generator is :

Ltotal = αLChar + βLLpips + γLG, (7)

where α, β, γ are set as 1, 1, 0.005 empirically.

4 Experiments

In this section, we introduce implementation details. Then we evaluate our pro-
posed framework on our constructed datasets.

4.1 Implementation

As for the structure, in our framework, we first apply the backbone of an at-
tention U-Net from DoveNet [3]. The pre-defined operator is set to the form of
formula 2. So the input channel of the backbone is 3, the output channel is 6, and
the number of filters in the last conv layer is 64. The number of downsamplings
in U-Net is set to 8. The normalization type is instance normalization.

As for the optimization, we first trained the generator from scratch with the
learning rate of 2e-4. The milestone is set as 20k, 30k, and the total iteration
is 40k for the HScene benchmark. And the milestone is set as 55k, 75k, and
the total iteration is 85k for the HLIP benchmark. When training the whole
framework with discriminator, we loaded the pre-trained generator model and
trained with another 10k for HScene and HLIP. We used the ADAM optimizer,
and the batch size in each GPU is set to 64. The whole training process is on
Nvidia 3090 GPUs. We implemented it based on BasicSR [24] framework. We
used 256 × 256 resolution for both training and testing evaluation.

The metric we use is Mean square Error(MSE), Peak Signal-to-Noise Ration
(PSNR), Structural SIMilarity (SSIM) [26] and Perceptual metrics (LPIPS) [27].
PSNR and SSIM pay more attention to the fidelity of the image rather than
visual quality [9]. The larger the two metrics, the less likely the image is distorted.
LPIPS mainly focuses on comparing the distance of visual features between the
generated image and the real one. In this work, we use pre-trained VGG to
extract image features, and the smaller the LPIPS is, the generated image is
closer to the real one visually.

4.2 Comparison to recent works

In this section, we compare our framework with the original output, which di-
rectly regresses the RGB value of each image in both quantitative and qualitative
methods. We also conduct a user study test to demonstrate the subjective effect
of these algorithms.
Quantitative Comparison: We evaluate the performance of our framework
on our conducted two benchmarks, HScene and HLIP. The baseline network is
adjusted from Dovenet[3]. We re-implemented it on the proposed multi-mask
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Table 2: The comparison of the composite, RGB format output, and our frame-
work output. Our framework can have a reasonable improvement on both the
two benchmarks.

Method HScene HLIP

Metric MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓
Composite 271.89 27.83 0.96 0.027 111.95 30.99 0.96 0.021

Sg-MHH(RGB) 141.75 28.73 0.95 0.026 75.45 31.34 0.95 0.025

Sg-MHH(OM) 99.84 30.59 0.96 0.020 48.02 33.11 0.96 0.021
Sg-MHH(OMGAN) 94.00 30.88 0.96 0.020 42.62 33.92 0.97 0.018

dataset by removing the input mask. The quantitative results are shown in Ta-
ble 2. The first line shows the metrics of the composited images on test datasets.
When directly outputting the RGB version of the harmonious image, the result
cannot be interpretable and modifiable, and the results are also sub-optimal in
our setting. Our framework makes an improvement in terms of all evaluation
metrics on two benchmarks.

To make a fair comparison with other SOTA methods, we also conduct ex-
periments on previous popular single-mask benchmarks, such as iHarmony4 [3].
We train and test on iHarmony4 [3] datasets and show the results in the supple-
mentary materials. The experiment results demonstrate that our methods can
also have a reasonable effect on the single-mask image harmonization task.
Qualitative Comparison: We show visual comparison results on our proposed
multi-mask harmonization datasets in Figure 3 and show more visualization on
supplementary. The first column shows the real images, and the second column
shows the perturbed images. In the third to fifth columns, we show the results
output in the previous version and the results output from our framework with-
out or with a discriminator. As the perturb methods on different segmentation
masks are different, our framework can deal with the situation with different
adjustment directions properly. As demonstrated in the red dotted box, the
methods that directly output the RGB format only adjust one inharmonious
region (the results in the last line) or adjust two areas but are not in place(the
results in the first line). In this way, we demonstrate that our framework has a
more flexible and realistic effect and can handle more complicated scenes.
User Study: We conduct user study to compare the results of our framework
which the backbone is from DoveNet with the original DoveNet[3], BarginNet[2]
and RainNet[13] methods and show the results in Table 3. We test all methods
on real composited images.

We consider three realistic situations to construct real composited images.
1) Real composite images that need structured adjustment, such as only chang-
ing the illumination. 2) Real composite images that foregrounds are cut from
pictures that have already been processed by Instagram filters and want to be
re-processed. 3) Real composite images that the foregrounds come from two real
pictures but already look realistic. Both of the composited images contain mul-
tiple regions that need to be changed. We construct 11 image pairs showing one
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Real Comp RGB Sg-MMH(OM) Sg-MMH(OMGAN) Mask

Fig. 3: Qualitative harmonization results. The first column is the real image.
The second column is the composited image. The third to the fifth column is
the harmonization results of a baseline RGB format and our framework with
or without GAN structure. OM means only use generator in our framework.
OMGAN represents generate operator masks with GAN framework.

Table 3: User study results on real composited images. We show four
images to users and ask them to choose the most realistic one. The number
means what percentage of subjects think the images produced by one method
are more realistic.

Methods User Study Score(%)↑
DoveNet[3] 20.6
BarginNet[2] 24.2
RainNet[13] 18.5

Sg-MMH(OMGAN) 36.7

picture of each setting in Figure 4. Since there is no real image as reference, we
cannot use evaluation like proposed in 4.1 to evaluate image quality. We asked
60 subjects, and each subject needed to independently select one image they
think is the most realistic of the four images. The images from the four methods
are presented randomly. From the qualitative results and user study, we can see
that, when dealing with the illumination change task, our method only change
the brightness level but retain other color prosperity. This is meaningful because,
in most cases, we just want to change the illumination of the foreground but keep
the color of the foreground itself. When dealing with pictures such as download-
ing from websites which already processed by camera filters, our method can
alleviate these filters and change them to a more natural appearance. This sit-
uation is also worth paying attention to because, in many cases, the landscape
images posted to the Internet have already been processed with camera filters,
but traditional color transfer methods cannot mimic the realistic filters. When
dealing with pictures in which the foregrounds are cut from real pictures, our
model mostly keeps remaining the foreground color because although the fore-
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Bg Fg1 Fg2 Total Mask Comp DoveNet BarginNet RainNet Sg-MMH(OMGAN)

Fig. 4: Qualitative results on real composited images. We compare our
method with recent state-of-the-art harmonization methods, including DoveNet,
BarginNet, and RainNet. Note that they all have input masks to indicate the
inharmonious regions while our method adjusts the input automatically. Our
proposed framework can apply different operations for different semantic regions
appropriately.

grounds and background are not from the same picture, the original foreground
is also reasonable in the new environment. In many cases, when the foreground
and background colors are not very consistent, the composite image also looks
actual and sensible and does not necessarily need to be adjusted. Only when the
color difference is very large and unreasonable the harmonization task needs to
adjust the composite image appropriately.

4.3 Discussion

Explainable property of operator masks: Our operator masks can sense
the changes and respond appropriately to the corresponding operator masks.
Here in Figure 5 we visualized our operator masks effect on our datasets. For
example, in the first line, the sky is perturbed to gray, and to recover it into
blue, the operator mask OMbadd

has a largely negative response since when the
picture is in LAB format, the smaller the value of channel B, the bluer the color.
In the second line, the foregrounds are disturbed in two directions, the hat is
perturbed greener, and the shoes become redder, so OMaadd

and OMbadd
has a

positive response in the hat region and has a negative response in the region of
the shoe. These pictures show that our algorithm can explain the changes the
network makes for the inharmonious input.

To illustrate that our method can also explain when dealing with real images,
we cut a foreground and paste it into a real background picture. Here in Fig-
ure 6(a) show that our operator mask OMladd

has a strong negative activation,
indicating that the brightness of the inharmonious region is reduced.
Editable property of operator masks: Previous work often generates har-
monized images directly, and the results cannot be edited if users do not like
the automatic outputs. However, in our work, we locate and generate operator
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Real Comp Sg-MMH(OMGAN) Mask L-add A-add B-add

Fig. 5: Visualization of the operator masks in our datasets. The first line
is the result from the HScene dataset, and the last line is the result from the
HLIP datasets. The last three columns visualize the operator masks of ‘add’ of
L, A, and B channels.

masks, which can be edited if users do not like the results. Here Figure 6(b)
shows the edible effect of our algorithm. Users can add or multiply a number to
deepen the color or change the illumination of the foreground. This figure shows
that our method can edit the harmonization results based on the automated
generation.

Limitation and future work: Our method attempt to first realize the har-
monization framework with operator masks. Although we have explored the ef-
fectiveness of operator masks and show their editable and explainable features,
there are still some limitations that need further exploration. First, the train-
ing of the harmonization network may heavily depend on the perturbations.
The particularity of the filters we use makes our model have many performance
limitations. The performance and generalization ability of the network can be
further improved if more perturbations are included in the data pre-processing.
Also, without special restrictions, some filters applied in our benchmarks make
some rare composited images occur. In future research, filters should be applied
according to the semantics of objects, such as a green filter should not be applied
to a face. Second, when dealing with the foreground color, current image har-
monization methods usually choose to transform the color of the foreground to
be consistent with the background, but this action is often unnecessary. Some-
times the foreground can keep its own color, and the whole composite image also
looks reasonable and realistic. Future work could go further step to explore in
which region the foreground color can be consistent with the background and
give a color range, rather than just outputting one result. Third, we propose six
alternative operator masks to build our retoucher. However, more complicated
operators require further exploration, for example, the shadow effects, the grainy
effect, or de-noise. Forth, as our operator masks are trained in an unsupervised
manner, there may be coupling between different masks. The controllability can
be further improved if the operator masks can be decoupled or with specific
supervision.
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Fig. 6: Here we show the explainable and editable attributes of our operator
masks. Figure 5(a) shows the Visualization of the operator masks in real
data. First row: the composite, the harmonious result, and the ground truth
foreground mask. Second row: the operator masks of ‘add’ operator masks in L,
A, and B channels. The L channel has a strong negative activation, indicating
the brightness of the inharmonious region has been reduced. Figure 5(b) shows
the Editing attribute of the operator masks. First row: gradually enlarge
the value of the ‘add’ operator mask in the A channel. Second row: gradually
enlarge the value level of the ‘add’ operator mask in the L channel, which is
the brightness. This figure shows that our method can edit the harmonization
results based on the generated results.

5 Conclusion

In order to tackle the problem that one composite image has multiple fore-
grounds pasted from other images, we set up a new setting Sg-MMH and pro-
pose two benchmarks, HScene and HLIP, to simulate the situation. To solve the
benchmarks, we propose a new framework that uses operator masks to solve the
multi-mask image harmonization task. The proposed methods can simulate pre-
set operations in the PhotoShop to edit each image channel and can be explained
and edited by users. Also, the operator masks can locate the inharmonious re-
gion automatically even when the indicator masks are not given. Experiments
show that our framework can handle the more complicated scenes and achieve
good results. There are also some limitations for the current work, such as the
design of the operator masks is easy and can not decoupled well. In the future,
more parametric operator masks can be applied to this framework based on ex-
pert knowledge, which will add more control and interpretability to the image
harmonization task.
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In this supplementary material, we will first show more illustration cases
about the explainable property of our proposed framework. Second, we show
more qualitative results of baseline and our proposed framework. Third, more
visualizations in our user study will be provided. Next, some ablation studies
is conducted. Finally, we will compare our framework with other state-of-art
methods on a public benchmark with single masks.

1 Explainable property of our framework

Here we show more results to demonstrate the explainable property of our frame-
work by visualizing operator masks. Figure 2 are the results from HScene, and
Figure 3 shows results from HLIP. We can see that our framework can sense
the disturbance in various directions and give a reasonable explanation for its
adjustment direction. Thus, our method can make the harmonization process in-
terpretability as well as ensure the performance is similar to previous baselines.
We can also see that our framework can harmonize two completely different ad-
justment directions in an image (like results show in the 1, 7, 8, 9, 10th line of
Figure 2 and the 1, 2, 5, 7, 8, 9, 10th line of Figure 3), which will not make
the framework adjust the foreground in only one direction, so our framework is
foreground-aware network.

2 Qualitative results between different output formats

In Figure 4, we show more qualitative visualization results between the RGB
output format and our operator masks output format. Our operator mask-based
framework is more suitable for structural adjustment, even there are different
harmonization directions in one image. Also, training in a GAN framework can
make the model pay more attention to the details(as can be seen in the 9th line
in Figure 4).

3 More User study results

Here we show more pictures used in the User Study in Figure 1. The first three
lines show results that only illumination needs to be changed. The 4, 5th shows
the results when foregrounds have already been processed by Instagram filters.
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The last few lines provide the results when foregrounds from different pictures,
but the composited images already look real. So our model tends to keep them
almost unchanged.

4 Ablation study on HScene

In this section, we show the effect of each component in our framework in Table 1.
It can be seen that both the perceptual loss and operator masks add improvement
to the final harmonious image. In order to better study the localization of our
framework, we limit the output and changes to OMadd and binarize the operator
masks. The IOU between our OMs and ground truth masks is 52.9%.

Table 1. Effects of different components in our framework.

OMadd OMmul LLpips D MSE↓ PSNR↑ SSIM↑ LPIPS↓
X 141.75 28.73 0.95 0.026

X X 92.45 30.79 0.96 0.052
X X X 99.84 30.59 0.96 0.020
X X 105.27 30.29 0.96 0.021
X X X X 94.00 30.88 0.96 0.020

5 Two-Stage v.s One-Stage

Our framework can harmonize regions without input masks, integrating local-
ization and harmonization functions. We compare our one-stage pipeline with
a two-stage pipeline. Previous methods need masks as input. When masks are
not provided, the localization method needs to be first used to get the inhar-
monious region. We first use DIRL[4] to locate the inharmonious regions and
then use DoveNet[2] to harmonize them progressively. The results can be seen
in Table 2. Our single-stage model greatly saves the processing time and have
higher precision.

Table 2. Comparison between the Two-Stage pipeline and the One-Stage pipeline.
The time is the whole seconds to process the test images. ‡ means we fine-tune the
whole model. We fine-tune DIRL 60 epochs and DoveNet 200 epochs.

Methods
HScene HLIP

MSE↓ PSNR↑ SSIM↑ LPIPS↓ Time(s)↓ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Time(s)↓
DIRL‡[4]+DoveNet‡[2] 158.94 29.06 0.95 0.066 287.6 80.34 31.45 0.96 0.047 1430.0

Sg-MMH(OMGAN) 94.00 30.88 0.96 0.020 106.6 42.62 33.92 0.97 0.018 599.0

6 Results on iHarmony4

Our framework mainly focuses on structural perturbations and the multi-mask
harmonization task. However, to further verify the effectiveness of our frame-
work, we tested it on the existing dataset. We choose iHarmony4[2] to further
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explore the ability of our framework when it is applied to a normal single-mask
harmonization task. We adapted an Harmonization Transformer [3] (HT) to im-
plement our framework and replaced the output as operators masks.The results
are shown in in Table 3.

In order to explore the effects of more kinds of operation masks, we also
implement experiments on HLS Color space, for it has more decoupled channels.
The operations on the H channel can manipulate the color independently, and the
operator masks on L and S channels can change the illumination and saturation
individually. So it is a better space to manipulate pictures more intuitively. We
visualize the explainable and editable properties in HLS color space with control
of the output with the simplest OMadd operator mask. In Figure 5, we visualize
the OMadd in H, L, and S channels, and in Figure 6, we change the value of the
OMadd in each channel separately to see the editable attribute of the operator
masks. We also binarize OMadd with a threshold of 1e-4 and further calculate
the mask IOU of OMadd with ground truth masks (51.1% for HCOCO, 85.3%
for HAdobe5k, 81.5% for HFlickr, 77.9% for Hday2night.)

Table 3. Quantitative results on four sub-datasets of iHarmony4. Bold means the best
results with our output format, Blod means the next best result. ‡ means we re-train
the whole model.

Sub-dataset HCOCO HAdobe5k HFlickr Hday2night All

Evaluation Metric MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑
Composite 69.37 33.94 345.54 28.16 264.35 28.32 109.65 34.01 172.47 31.63

DoveNet(RGB)[2] 36.72 35.93 52.32 34.34 133.14 30.21 54.05 35.18 52.36 34.75

HT(RGB‡)[3] 14.64 39.04 22.03 38.85 54.34 34.12 52.26 36.75 21.91 38.39

HT(HLS, OMadd) 21.60 37.45 29.48 36.89 78.29 32.59 63.81 36.36 31.00 36.73
HT(HLS, OMadd + OMmul) 21.47 37.56 29.17 37.15 73.96 32.83 55.11 36.84 30.19 36.90
HT(LAB, OMadd + OMmul) 13.95 39.14 22.04 38.64 59.03 34.00 43.57 36.86 21.89 38.38
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Bg Fg1 Fg2 Total Mask Comp DoveNet BarginNet RainNet Sg-MMH(OMGAN)

Fig. 1. Here we show more visualizations used in the User Study to compare the results
of our method with DoveNet[2], BarginNet[1], and RainNet[5].
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Real Comp Sg-MMH(OMGAN) Mask L-add A-add B-add

Fig. 2. Here we visualize more examples from HScene. Our Operator Masks can make
positive or negative responses according to different changes in the foregrounds.
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Real Comp Sg-MMH(OMGAN) Mask L-add A-add B-add

Fig. 3. Here we visualize more examples from HLIP. Our Operator Masks can make
positive or negative responses according to different changes in the foregrounds.
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Real Comp Sg-MMH(RGB) Sg-MMH(OM) Sg-MMH(OMGAN) Mask

Fig. 4. Here we show more comparison results between RGB output format and our
Operator Mask output w/wo discriminator.



8 Xuqian Ren, Yifan Liu

Real Comp Sg-MMH(OMGAN) Mask H-add L-add S-add

Fig. 5. Here we visualize some examples from iHarmony4. Our Operator Masks can
make positive or negative responses according to different changes in the foregrounds.
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Real H-0.1 H+0.1 H+0.2 H+0.5 H+0.6 H+0.7 H+0.9

Comp L-0.4 L-0.3 L-0.2 L-0.1 L+0.1 L+0.2 L+0.3

Our S-0.3 S-0.2 S-0.1 S+0.1 S+0.2 S+0.3 S+0.4

Real H-0.4 H-0.2 H+0.2 H+0.4 H+0.6 H+0.7 H+0.8

Comp L-0.3 L-0.2 L-0.1 L+0.1 L+0.2 L+0.3 L+0.4

Our S-0.4 S-0.2 S+0.1 S+0.3 S+0.5 S+0.6 S+0.8

Real H-0.2 H+0.2 H+0.4 H+0.5 H+0.6 H+0.7 H+0.8

Comp L-0.4 L-0.3 L-0.2 L-0.1 L+0.1 L+0.2 L+0.3

Our S-0.6 S-0.4 S-0.2 S-0.1 S+0.1 S+0.2 S+0.3

Fig. 6. Here we visualize the editable property with samples from iHarmony4. We
change the OMadd in H, L, and S channels separately to gain various outputs.
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