Skip to main content

Learning an Isometric Surface Parameterization for Texture Unwrapping

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13697))

Included in the following conference series:

Abstract

In this paper, we present a novel approach to learn texture mapping for an isometrically deformed 3D surface and apply it for texture unwrapping of documents or other objects. Recent work on differentiable rendering techniques for implicit surfaces has shown high-quality 3D scene reconstruction and view synthesis results. However, these methods typically learn the appearance color as a function of the surface points and lack explicit surface parameterization. Thus they do not allow texture map extraction or texture editing. We propose an efficient method to learn surface parameterization by learning a continuous bijective mapping between 3D surface positions and 2D texture-space coordinates. Our surface parameterization network can be conveniently plugged into a differentiable rendering pipeline and trained using multi-view images and rendering loss. Using the learned parameterized implicit 3D surface we demonstrate state-of-the-art document-unwarping via texture extraction in both synthetic and real scenarios. We also show that our approach can reconstruct high-frequency textures for arbitrary objects. We further demonstrate the usefulness of our system by applying it to document and object texture editing. Code and related assets are available at: https://github.com/cvlab-stonybrook/Iso-UVField.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blender - a 3D modelling and rendering package

    Google Scholar 

  2. Bartoli, A., Gerard, Y., Chadebecq, F., Collins, T., Pizarro, D.: Shape-from-template. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 2099–2118 (2015)

    Article  Google Scholar 

  3. Bau, D., et al.: Semantic photo manipulation with a generative image prior. ACM Trans. Graph. (TOG) 38(4) (2019)

    Google Scholar 

  4. Bednarik, J., Parashar, S., Gundogdu, E., Salzmann, M., Fua, P.: Shape reconstruction by learning differentiable surface representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  5. Bergman, A.W., Kellnhofer, P., Wetzstein, G.: Fast training of neural lumigraph representations using meta learning (2021)

    Google Scholar 

  6. Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-based texture mapping. ACM Trans. Graph. (TOG) 36(4), 1–106 (2017)

    Article  Google Scholar 

  7. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: Proceedings of the International Conference on Computer Vision (2019)

    Google Scholar 

  8. Chan, T., Zhu, W.: Level set based shape prior segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2005)

    Google Scholar 

  9. Chen, A., Chen, Z., Zhang, G., Mitchell, K., Yu, J.: Photo-realistic facial details synthesis from single image. In: Proceedings of the International Conference on Computer Vision (2019)

    Google Scholar 

  10. Chen, A., et al.: MVSNeRF: Fast generalizable radiance field reconstruction from multi-view stereo. arXiv preprint arXiv:2103.15595 (2021)

  11. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

    Google Scholar 

  12. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: A unified approach for single and multi-view 3d object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  13. Das, S., Ma, K., Shu, Z., Samaras, D., Shilkrot, R.: DewarpNet: Single-image document unwarping with stacked 3D and 2D regression networks. In: Proceedings of the International Conference on Computer Vision (2019)

    Google Scholar 

  14. Das, S., Mishra, G., Sudharshana, A., Shilkrot, R.: The common fold: Utilizing the four-fold to dewarp printed documents from a single image. In: Proceedings of the 2017 ACM Symposium on Document Engineering, DocEng 2017, pp. 125–128. Association for Computing Machinery (2017). https://doi.org/10.1145/3103010.3121030

  15. Das, S., et al.: End-to-end piece-wise unwarping of document images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4268–4277 (2021)

    Google Scholar 

  16. Deng, J., Cheng, S., Xue, N., Zhou, Y., Zafeiriou, S.: Uv-gan: Adversarial facial uv map completion for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  17. Feng, H., Wang, Y., Zhou, W., Deng, J., Li, H.: Doctr: Document image transformer for geometric unwarping and illumination correction. arXiv preprint arXiv:2110.12942 (2021)

  18. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-fidelity neural rendering at 200fps (2021)

    Google Scholar 

  19. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)

  20. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3d surface generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  21. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G., Halle, M.: Conformal surface parameterization for texture mapping. IEEE Trans. Visual Comput. Graphics 6(2), 181–189 (2000)

    Article  Google Scholar 

  22. Hart, J.C.: Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. Vis. Comput. 12(10), 527–545 (1996)

    Article  Google Scholar 

  23. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (TOG) 37(6), 1–15 (2018)

    Article  Google Scholar 

  24. Kato, H., Ushiku, Y., Harada, T.: Neural 3d mesh renderer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  25. Kil, T., Seo, W., Koo, H.I., Cho, N.I.: Robust Document Image Dewarping Method Using Text-Lines and Line Segments. In: Proceedings of the International Conference on Document Analysis and Recognition, Institute of Electrical and Electronics Engineers, pp. 865–870. IEEE (2017)

    Google Scholar 

  26. Koo, H.I., Kim, J., Cho, N.I.: Composition of a dewarped and enhanced document image from two view images. IEEE Trans. Image Process. 18(7), 1551–1562 (2009)

    Article  MathSciNet  Google Scholar 

  27. Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray tracing through edge sampling. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)

    Article  Google Scholar 

  28. Li, X., Zhang, B., Liao, J., Sander, P.V.: Document Rectification and Illumination Correction using a Patch-based CNN. ACM Trans. Graph. (TOG) 168, 1–11 (2019)

    Google Scholar 

  29. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. arXiv preprint arXiv:2011.13084 (2020)

  30. Liang, J., DeMenthon, D., Doermann, D.: Geometric rectification of camera-captured document images. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 591–605 (2008)

    Article  Google Scholar 

  31. Liu, C., Yuen, J., Torralba, A.: Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    Article  Google Scholar 

  32. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In: Proceedings of the International Conference on Computer Vision (2019)

    Google Scholar 

  33. Liu, S., Saito, S., Chen, W., Li, H.: Learning to infer implicit surfaces without 3d supervision. arXiv preprint arXiv:1911.00767 (2019)

  34. Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: DocUNet: Document Image Unwarping via A Stacked U-Net. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronics Engineers (2018)

    Google Scholar 

  35. Markovitz, A., Lavi, I., Perel, O., Mazor, S., Litman, R.: Can you read me now? Content aware rectification using angle supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 208–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_13

    Chapter  Google Scholar 

  36. Meka, A., et al.: Deep reflectance fields: High-quality facial reflectance field inference from color gradient illumination. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  37. Meng, G., Huang, Z., Song, Y., Xiang, S., Pan, C.: Extraction of virtual baselines from distorted document images using curvilinear projection. In: Proceedings of the International Conference on Computer Vision (2015)

    Google Scholar 

  38. Meng, G., Su, Y., Wu, Y., Xiang, S., Pan, C.: Exploiting vector fields for geometric rectification of distorted document images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 180–195. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_11

    Chapter  Google Scholar 

  39. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3d reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  40. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  41. Miller, F.P., Vandome, A.F., McBrewster, J.: Levenshtein Distance: Information Theory, Computer Science, String (Computer Science), String Metric, Damerau?Levenshtein Distance, Spell Checker. Alpha Press, Hamming Distance (2009)

    Google Scholar 

  42. Mir, A., Alldieck, T., Pons-Moll, G.: Learning to transfer texture from clothing images to 3d humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  43. Morreale, L., Aigerman, N., Kim, V., Mitra, N.J.: Neural surface maps (2021)

    Google Scholar 

  44. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3504–3515 (2020)

    Google Scholar 

  45. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  46. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  47. Pumarola, A., Agudo, A., Porzi, L., Sanfeliu, A., Lepetit, V., Moreno-Noguer, F.: Geometry-aware network for non-rigid shape prediction from a single view. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronics Engineers (2018)

    Google Scholar 

  48. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radiance fields for dynamic scenes. arXiv preprint arXiv:2011.13961 (2020)

  49. Ramon, E., et al.: H3d-net: Few-shot high-fidelity 3d head reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5620–5629 (2021)

    Google Scholar 

  50. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  51. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields for 3d-aware image synthesis. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  52. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. arXiv (2020)

    Google Scholar 

  53. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: Deepvoxels: Learning persistent 3d feature embeddings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  54. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Continuous 3d-structure-aware neural scene representations. arXiv preprint arXiv:1906.01618 (2019)

  55. Tang, C., Tan, P.: Ba-net: Dense bundle adjustment network. arXiv preprint arXiv:1806.04807 (2018)

  56. Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics Forum, vol. 39, pp. 701–727. Wiley Online Library (2020)

    Google Scholar 

  57. Tian, Y., Narasimhan, S.G.: Rectification and 3D reconstruction of curved document images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronics Engineers (2011)

    Google Scholar 

  58. Tzur, Y., Tal, A.: FlexiStickers: Photogrammetric texture mapping using casual images. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. Association for Computing Machinery (2009)

    Google Scholar 

  59. Ulges, A., Lampert, C.H., Breuel, T.: Document capture using stereo vision. In: Proceedings of the 2004 ACM Symposium on Document Engineering, DocEng 2004, pp. 198–200. Association for Computing Machinery (2004). https://doi.org/10.1145/1030397.1030434

  60. Wada, T., Ukida, H., Matsuyama, T.: Shape from shading with interreflections under a proximal light source: Distortion-free copying of an unfolded book. Int. J. Comput. Vision 24(2), 125–135 (1997)

    Article  Google Scholar 

  61. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

    Chapter  Google Scholar 

  62. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems and Computers. Institute of Electrical and Electronics Engineers (2003)

    Google Scholar 

  63. Wei, S.E., et al.: Vr facial animation via multiview image translation. ACM Trans. Graph. (TOG) 38(4), 1–16 (2019)

    Article  Google Scholar 

  64. Xiang, F., Xu, Z., Hašan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H.: NeuTex: Neural texture mapping for volumetric neural rendering. arXiv preprint arXiv:2103.00762 (2021)

  65. Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)

    Article  Google Scholar 

  66. Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Ronen, B., Lipman, Y.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  67. You, S., Matsushita, Y., Sinha, S., Bou, Y., Ikeuchi, K.: Multiview rectification of folded documents. IEEE Trans. Pattern Anal. Mach. Intell. 40, 505–511 (2017)

    Article  Google Scholar 

  68. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: Neural radiance fields from one or few images. arXiv preprint arXiv:2012.02190 (2020)

  69. Zhao, F., Liao, S., Zhang, K., Shao, L.: Human parsing based texture transfer from single image to 3D human via cross-view consistency. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

Download references

Acknowledgements

This work was done when Ke Ma was at Stony Brook University. This work was partially supported by the Partner University Fund, the SUNY2020 ITSC, the FRA project “Deep Learning for Large-Scale Rail Defect Inspection” and gifts from Adobe and Amazon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagnik Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S., Ma, K., Shu, Z., Samaras, D. (2022). Learning an Isometric Surface Parameterization for Texture Unwrapping. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19836-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19835-9

  • Online ISBN: 978-3-031-19836-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics