Skip to main content

Fabric Material Recovery from Video Using Multi-scale Geometric Auto-Encoder

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13697))

Included in the following conference series:

Abstract

Fabric materials are central to recreating realistic appearance of avatars in a virtual world and many VR applications, ranging from virtual try-on, teleconferencing, to character animation. We propose an end-to-end network model that uses video input to estimate the fabric materials of the garment worn by a human or an avatar in a virtual world. To achieve the high accuracy, we jointly learn human body and the garment geometry as conditions to material prediction. Due to the highly dynamic and deformable nature of cloth, general data-driven garment modeling remains a challenge. To address this problem, we propose a two-level auto-encoder to account for both global and local features of any garment geometry that would directly affect material perception. Using this network, we can also achieve smooth geometry transitioning between different garment topologies. During the estimation, we use a closed-loop optimization structure to share information between tasks and feed the learned garment features for temporal estimation of garment materials. Experiments show that our proposed network structures greatly improve the material classification accuracy by 1.5x, with applicability to unseen input. It also runs at least three orders of magnitude faster than the state-of-the-art [59, 61]. We demonstrate the recovered fabric materials on virtual try-on, where we recreate the entire avatar appearance, including body shape and pose, garment geometry and materials from only a single video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alldieck, T., Magnor, M.A., Bhatnagar, B.L., Theobalt, C., Pons-Moll, G.: Learning to reconstruct people in clothing from a single RGB camera. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 1175–1186. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00127, http://openaccess.thecvf.com/content_CVPR_2019/html/Alldieck_Learning_to_Reconstruct_People_in_Clothing_From_a_Single_RGB_CVPR_2019_paper.html

  2. Alldieck, T., Magnor, M.A., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3d people models. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 8387–8397. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00875, http://openaccess.thecvf.com/content_cvpr_2018/html/Alldieck_Video_Based_Reconstruction_CVPR_2018_paper.html

  3. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.A.: Tex2shape: detailed full human body geometry from a single image. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, pp. 2293–2303. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00238

  4. Bednarik, J., Parashar, S., Gundogdu, E., Salzmann, M., Fua, P.: Shape reconstruction by learning differentiable surface representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4716–4725 (2020)

    Google Scholar 

  5. Bhat, K.S., Twigg, C.D., Hodgins, J.K., Khosla, P., Popovic, Z., Seitz, S.M.: Estimating cloth simulation parameters from video (2003)

    Google Scholar 

  6. Bhatnagar, B.L., Tiwari, G., Theobalt, C., Pons-Moll, G.: Multi-garment net: learning to dress 3d people from images. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, pp. 5419–5429. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00552

  7. Bi, W., Jin, P., Nienborg, H., Xiao, B.: Estimating mechanical properties of cloth from videos using dense motion trajectories: Human psychophysics and machine learning. J. Vision 18(5), 12–12 (2018)

    Article  Google Scholar 

  8. Bi, W., Xiao, B.: Perceptual constancy of mechanical properties of cloth under variation of external forces. In: Proceedings of the ACM Symposium on Applied Perception, pp. 19–23 (2016)

    Google Scholar 

  9. Bickel, B., et al.: Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. (TOG) 29(4), 1–10 (2010)

    Article  Google Scholar 

  10. Bouman, K.L., Xiao, B., Battaglia, P., Freeman, W.T.: Estimating the material properties of fabric from video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1984–1991 (2013)

    Google Scholar 

  11. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., Boubekeur, T.: Markerless garment capture. In: ACM SIGGRAPH 2008 papers, pp. 1–9 (2008)

    Google Scholar 

  12. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  13. Casati, R., Daviet, G., Bertails-Descoubes, F.: Inverse elastic cloth design with contact and friction. Ph.D. thesis, Inria Grenoble Rhône-Alpes, Université de Grenoble (2016)

    Google Scholar 

  14. Chen, X., Zhou, B., Lu, F.X., Wang, L., Bi, L., Tan, P.: Garment modeling with a depth camera. ACM Trans. Graph. 34(6), 203–1 (2015)

    Article  Google Scholar 

  15. Clyde, D., Teran, J., Tamstorf, R.: Modeling and data-driven parameter estimation for woven fabrics. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–11 (2017)

    Google Scholar 

  16. Daněřek, R., Dibra, E., Öztireli, C., Ziegler, R., Gross, M.: Deepgarment: 3d garment shape estimation from a single image. In: Computer Graphics Forum, vol. 36, pp. 269–280. Wiley Online Library (2017)

    Google Scholar 

  17. Deprelle, T., Groueix, T., Fisher, M., Kim, V., Russell, B., Aubry, M.: Learning elementary structures for 3d shape generation and matching. In: Advances in Neural Information Processing Systems, pp. 7433–7443 (2019)

    Google Scholar 

  18. Feydy, J., Séjourné, T., Vialard, F.X., Amari, S.I., Trouvé, A., Peyré, G.: Interpolating between optimal transport and mmd using sinkhorn divergences. arXiv preprint arXiv:1810.08278 (2018)

  19. Gong, W., et al.: Human pose estimation from monocular images: a comprehensive survey. Sensors 16(12), 1966 (2016)

    Article  Google Scholar 

  20. Guarnera, G.C., Hall, P., Chesnais, A., Glencross, M.: Woven fabric model creation from a single image. ACM Trans. Graph. (TOG) 36(5), 1–13 (2017)

    Article  Google Scholar 

  21. Gundogdu, E., Constantin, V., Seifoddini, A., Dang, M., Salzmann, M., Fua, P.: Garnet: a two-stream network for fast and accurate 3d cloth draping. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8739–8748 (2019)

    Google Scholar 

  22. Habermann, M., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Deepcap: monocular human performance capture using weak supervision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, June 2020

    Google Scholar 

  23. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  24. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: animatable reconstruction of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2020)

    Google Scholar 

  25. Jeong, M.H., Han, D.H., Ko, H.S.: Garment capture from a photograph. Comput. Animation Virtual Worlds 26(3–4), 291–300 (2015)

    Article  Google Scholar 

  26. Jiang, B., Zhang, J., Hong, Y., Luo, J., Liu, L., Bao, H.: Bcnet: learning body and cloth shape from a single image. arXiv preprint arXiv:2004.00214 (2020)

  27. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  28. Klokov, R., Lempitsky, V.: Escape from cells: Deep KD-networks for the recognition of 3d point cloud models. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  29. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  30. Lahner, Z., Cremers, D., Tung, T.: Deepwrinkles: accurate and realistic clothing modeling. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 667–684 (2018)

    Google Scholar 

  31. Li, J., Chen, B.M., Hee Lee, G.: So-net: self-organizing network for point cloud analysis. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  32. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)

    Google Scholar 

  33. Liang, J., Lin, M.C.: Shape-aware human pose and shape reconstruction using multi-view images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4352–4362 (2019)

    Google Scholar 

  34. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  35. Ma, Q., Saito, S., Yang, J., Tang, S., Black, M.J.: Scale: modeling clothed humans with a surface codec of articulated local elements. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16082–16093 (2021)

    Google Scholar 

  36. Mehta, D., et al.: VNect: real-time 3d human pose estimation with a single RGB camera. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  37. Miguel, E., et al.: Data-driven estimation of cloth simulation models. In: Computer Graphics Forum, vol. 31, pp. 519–528. Wiley Online Library (2012)

    Google Scholar 

  38. Miguel, E., et al.: Modeling and estimation of internal friction in cloth. ACM Trans. Graph. (TOG) 32(6), 1–10 (2013)

    Article  MathSciNet  Google Scholar 

  39. Patel, C., Liao, Z., Pons-Moll, G.: TailorNet: predicting clothing in 3d as a function of human pose, shape and garment style. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, June 2020

    Google Scholar 

  40. Pumarola, A., Sanchez-Riera, J., Choi, G., Sanfeliu, A., Moreno-Noguer, F.: 3dpeople: Modeling the geometry of dressed humans. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2242–2251 (2019)

    Google Scholar 

  41. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from RGB-d data. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  42. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  43. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  44. Rasheed, A.H., Romero, V., Bertails-Descoubes, F., Wuhrer, S., Franco, J.S., Lazarus, A.: Learning to measure the static friction coefficient in cloth contact. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9912–9921 (2020)

    Google Scholar 

  45. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  46. Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22(3), 579–590 (2002)

    Article  Google Scholar 

  47. Santesteban, I., Otaduy, M.A., Casas, D.: Learning-based animation of clothing for virtual try-on. In: Computer Graphics Forum, vol. 38, pp. 355–366. Wiley Online Library (2019)

    Google Scholar 

  48. Smith, D., Loper, M., Hu, X., Mavroidis, P., Romero, J.: Facsimile: fast and accurate scans from an image in less than a second. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5330–5339 (2019)

    Google Scholar 

  49. Tan, Q., Pan, Z., Gao, L., Manocha, D.: Realtime simulation of thin-shell deformable materials using CNN-based mesh embedding. IEEE Robot. Autom. Lett. 5(2), 2325–2332 (2020)

    Article  Google Scholar 

  50. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  51. Tiwari, G., Bhatnagar, B.L., Tung, T., Pons-Moll, G.: Sizer: a dataset and model for parsing 3d clothing and learning size sensitive 3d clothing. arXiv preprint arXiv:2007.11610 (2020)

  52. Varol, G., et al.: Bodynet: Volumetric inference of 3d human body shapes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 20–36 (2018)

    Google Scholar 

  53. Vidaurre, R., Casas, D., Garces, E., Lopez-Moreno, J.: BRDF estimation of complex materials with nested learning. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1347–1356. IEEE (2019)

    Google Scholar 

  54. Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. (TOG) 30(4), 1–12 (2011)

    Google Scholar 

  55. Wang, T.Y., Ceylan, D., Popovic, J., Mitra, N.J.: Learning a shared shape space for multimodal garment design. arXiv preprint arXiv:1806.11335 (2018)

  56. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  57. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)

    Google Scholar 

  58. Xu, Y., Zhu, S.C., Tung, T.: DenseRaC: joint 3d pose and shape estimation by dense render-and-compare. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7760–7770 (2019)

    Google Scholar 

  59. Yang, S., et al.: Detailed garment recovery from a single-view image. arXiv preprint arXiv:1608.01250 (2016)

  60. Yang, S., Liang, J., Lin, M.C.: Learning-based cloth material recovery from video. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4383–4393 (2017)

    Google Scholar 

  61. Yang, S., et al.: Physics-inspired garment recovery from a single-view image. ACM Trans. Graph. (TOG) 37(5), 1–14 (2018)

    Article  Google Scholar 

  62. Yu, T., et al.: SimulCap: Single-view human performance capture with cloth simulation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5499–5509. IEEE (2019)

    Google Scholar 

  63. Zakharkin, I., Mazur, K., Grigorev, A., Lempitsky, V.: Point-based modeling of human clothing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14718–14727 (2021)

    Google Scholar 

  64. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: DeepHuman: 3d human reconstruction from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7739–7749 (2019)

    Google Scholar 

  65. Zhou, B., Chen, X., Fu, Q., Guo, K., Tan, P.: Garment modeling from a single image. In: Computer Graphics Forum, vol. 32, pp. 85–91. Wiley Online Library (2013)

    Google Scholar 

  66. Zhou, Y., Tuzel, O.: VoxelNet: End-to-end learning for point cloud based 3d object detection. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  67. Zhu, H., et al.: Deep fashion3d: a dataset and benchmark for 3d garment reconstruction from single images. arXiv preprint arXiv:2003.12753 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbang Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Lin, M. (2022). Fabric Material Recovery from Video Using Multi-scale Geometric Auto-Encoder. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13697. Springer, Cham. https://doi.org/10.1007/978-3-031-19836-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19836-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19835-9

  • Online ISBN: 978-3-031-19836-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics