Abstract
We address the task of predicting what parts of an object can open and how they move when they do so. The input is a single image of an object, and as output we detect what parts of the object can open, and the motion parameters describing the articulation of each openable part. To tackle this task, we create two datasets of 3D objects: OPDSynth based on synthetic objects, and OPDReal based on RGBD reconstructions of real objects. We then design OpdRcnn, a neural architecture that detects openable parts and predicts their motion parameters. Our experiments show that this is a challenging task especially when considering generalization across object categories, and the limited amount of information in a single image. Our architecture outperforms baselines and prior work especially for RGB image inputs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbatematteo, B., Tellex, S., Konidaris, G.: Learning to generalize kinematic models to novel objects. In: Proceedings of the 3rd Conference on Robot Learning (2019)
Batra, D., et al.: Rearrangement: A challenge for embodied AI. arXiv preprint arXiv:2011.01975 (2020)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOV4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what you can: detecting and representing objects using holistic models and body parts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1971–1978 (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2961–2969 (2017)
Hu, R., Li, W., Van Kaick, O., Shamir, A., Zhang, H., Huang, H.: Learning to predict part mobility from a single static snapshot. ACM Trans. Graph. (TOG) 36(6), 227 (2017)
Hu, R., Savva, M., van Kaick, O.: Functionality representations and applications for shape analysis. Comput. Graph. Forum 37(2), 603–624 (2018)
Huang, J., et al.: MultiBodySync: multi-body segmentation and motion estimation via 3D scan synchronization. arXiv preprint arXiv:2101.06605 (2021)
Jain, A., Lioutikov, R., Niekum, S.: ScrewNet: Category-independent articulation model estimation from depth images using screw theory. arXiv preprint arXiv:2008.10518 (2020)
Li, H., Wan, G., Li, H., Sharf, A., Xu, K., Chen, B.: Mobility fitting using 4D RANSAC. Comput. Graph. Forum 35(5), 79–88 (2016)
Li, X., Wang, H., Yi, L., Guibas, L., Abbott, A.L., Song, S.: Category-level articulated object pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, L., Xu, W., Fu, H., Qian, S., Han, Y., Lu, C.: AKB-48: a real-world articulated object knowledge base. arXiv preprint arXiv:2202.08432 (2022)
Liu, Q., Qiu, W., Wang, W., Hager, G.D., Yuille, A.L.: Nothing but geometric constraints: a model-free method for articulated object pose estimation. arXiv preprint arXiv:2012.00088 (2020)
Lu, C., et al.: Beyond holistic object recognition: enriching image understanding with part states. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6955–6963 (2018)
Martín-Martín, R., Eppner, C., Brock, O.: The RBO dataset of articulated objects and interactions. Int. J. Robot. Res. 38(9), 1013–1019 (2019)
Mitra, N.J., Yang, Y.L., Yan, D.M., Li, W., Agrawala, M.: Illustrating how mechanical assemblies work. ACM Trans. Graph.-TOG 29(4), 58 (2010)
Mittal, M., Hoeller, D., Farshidian, F., Hutter, M., Garg, A.: Articulated object interaction in unknown scenes with whole-body mobile manipulation. arXiv preprint arXiv:2103.10534 (2021)
Mo, K., et al.: PartNet: a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 909–918 (2019)
Sharf, A., Huang, H., Liang, C., Zhang, J., Chen, B., Gong, M.: Mobility-trees for indoor scenes manipulation. Comput. Graph. Forum 33(1), 2–14 (2014)
Shridhar, M., et al.: Alfred: a benchmark for interpreting grounded instructions for everyday tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10740–10749 (2020)
Srivastava, S., et al.: BEHAVIOR: Benchmark for everyday household activities in virtual, interactive, and ecological environments. In: Conference on Robot Learning, pp. 477–490. PMLR (2022)
Szot, A., et al.: Habitat 2.0: training home assistants to rearrange their habitat. Adv. Neural. Inf. Process. Syst. 34, 251–266 (2021)
Varol, G., et al.: Learning from synthetic humans. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 109–117 (2017)
Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing of 3d reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 836–850. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_54
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651 (2019)
Wang, J., Yuille, A.L.: Semantic part segmentation using compositional model combining shape and appearance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1788–1797 (2015)
Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Joint object and part segmentation using deep learned potentials. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1573–1581 (2015)
Wang, X., Zhou, B., Fang, H., Chen, X., Zhao, Q., Xu, K.: Learning to group and label fine-grained shape components. ACM Trans. Graph. (TOG) 37(6), 1–14 (2018)
Wang, X., Zhou, B., Shi, Y., Chen, X., Zhao, Q., Xu, K.: Shape2Motion: joint analysis of motion parts and attributes from 3D shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8876–8884 (2019)
Weihs, L., Deitke, M., Kembhavi, A., Mottaghi, R.: Visual room rearrangement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2
Xia, F., Wang, P., Chen, X., Yuille, A.L.: Joint multi-person pose estimation and semantic part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6769–6778 (2017)
Xiang, F., et al.: SAPIEN: a simulated part-based interactive environment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11097–11107 (2020)
Xu, W., et al.: Joint-aware manipulation of deformable models. ACM Trans. Graph. (TOG) 28(3), 1–9 (2009)
Yan, Z., et al.: RPM-Net: recurrent prediction of motion and parts from point cloud. ACM Trans. Graph. (TOG) 38(6), 240 (2019)
Yi, L., Huang, H., Liu, D., Kalogerakis, E., Su, H., Guibas, L.: Deep part induction from articulated object pairs. ACM Trans. Graph. (TOG) 37(6), 209 (2019)
Yi, L., et al.: A scalable active framework for region annotation in 3D shape collections. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
Zeng, V., Lee, T.E., Liang, J., Kroemer, O.: Visual identification of articulated object parts. arXiv preprint arXiv:2012.00284 (2020)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)
Acknowledgements
This work was funded in part by a Canada CIFAR AI Chair, a Canada Research Chair and NSERC Discovery Grant, and enabled in part by support from WestGrid and Compute Canada. We thank Sanjay Haresh for help with scanning and video narration, Yue Ruan for scanning and data annotation, and Supriya Pandhre, Xiaohao Sun, and Qirui Wu for help with data annotation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, H., Mao, Y., Savva, M., Chang, A.X. (2022). OPD: Single-View 3D Openable Part Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-19842-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19841-0
Online ISBN: 978-3-031-19842-7
eBook Packages: Computer ScienceComputer Science (R0)