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Abstract. Instance segmentation with unseen objects is a challenging
problem in unstructured environments. To solve this problem, we pro-
pose a robot learning approach to actively interact with novel objects
and collect each object’s training label for further fine-tuning to im-
prove the segmentation model performance, while avoiding the time-
consuming process of manually labeling a dataset. Given a cluttered
pile of objects, our approach chooses pushing and grasping motions to
break the clutter and conducts object-agnostic grasping for which the
Singulation-and-Grasping (SaG) policy takes as input the visual obser-
vations and imperfect segmentation. We decompose the problem into
three subtasks: (1) the object singulation subtask aims to separate the
objects from each other, which creates more space that alleviates the dif-
ficulty of (2) the collision-free grasping subtask; (3) the mask generation
subtask obtains the self-labeled ground truth masks by using an optical
flow-based binary classifier and motion cue post-processing for transfer
learning. Our system achieves 70% singulation success rate in simulated
cluttered scenes. The interactive segmentation of our system achieves
87.8%, 73.9%, and 69.3% average precision for toy blocks, YCB objects
in simulation, and real-world novel objects, respectively, which outper-
forms the compared baselines. Please refer to our project page for more
information: https://z.umn.edu/sag-interactive-segmentation.

Keywords: Interactive Segmentation, Reinforcement Learning, Robot
Manipulation

1 Introduction

Instance segmentation is one of the most informative inputs to visual-based robot
manipulation systems. It greatly accelerates the robotic learning process while
improves the motion efficiency for target-oriented tasks [13,24,27,41]. However,
in real cases, robot agents frequently encounter novel objects in unstructured
environments, exacerbating the accuracy of object segmentation [39,40]. In such
a situation, humans often employ multiple interactions with the unknown ob-
jects and perceive object segments having consistent motions. This allows us to
eventually get familiar with the novel objects and understand their shapes and
contours [37]. Our work aims to enable robots to perform the same task. Given
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Fig. 1. The robot agent learns a Singulation-and-Grasping (SaG) policy via deep Q-
learning in simulation. We collect the RGB images before and after applying the actions
and use coherent motion to create pseudo ground truth masks for the segmentation
transfer learning.

an imperfect segmentation model and unseen objects, our robot agent learns to
obtain object segment labels in a self-supervised manner via object pushing and
grasping interactions and then improves its segmentation model to perceive the
novel objects more effectively.

Classical learning-based segmentation methods require a large amount of
human-labeled training annotation, such as ImageNet [34] and MS COCO dataset
[28]. While these methods have shown generalization to novel objects to some
extent, they underperform when objects are out of the distribution of the trained
objects. Interactive segmentation approach has taken an orthogonal avenue by
actively collecting labels for novel objects using a robotic manipulator. Pathak
et al. uses picking-and-placing [32] and Eitel et al. adopts pushing for singula-
tion [11] to generate single object location displacement and obtain the ground
truth label. However, these methods are limited because the simple frame differ-
ence method in [32] is noisy in label annotations and inefficient when multiple
objects move simultaneously due to grasping collisions and failures. The work
in [11] requires a relatively accurate segmentation method and a large amount
of hand-labelled pushing actions to train their push proposal network [12] be-
forehand and cannot be directly applied to unseen scenes.

To address the limitations above and obtain high quality object annotations
with minimal human intervention, we propose a Singulation-and-Grasping (SaG)
pipeline free of laborious manual annotation to improve the segmentation results
through robot-object interaction. Fig. 1 shows our solution to the problem. The
main contributions of our work are as follows:

– We train the Singulation-and-Grasping (SaG) policy in an end-to-end learn-
ing of a Deep Q-Network (DQN) without human annotations.
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– We propose a data collection pipeline combining both the pushing and
grasping motions to generate high-quality pseudo ground truth masks for
unseen objects. The segmentation results after transfer learning show that
our method can be used for unseen object segmentation in highly cluttered
scenes.

– We evaluate our system in a real-world setting without fine-tuning the DQN,
which shows the system generalization capability.

2 RELATED WORK

Interactive Segmentation Previous works dealing with the interactive per-
ception problem focus on generating interactions with the environment based
on objectness hypotheses and obtaining feedback after applying actions to up-
date the segmentation results in recognition, data collection, and pose estimation
tasks [3, 14, 22, 25]. Many methods use a robot manipulator to distinguish one
object from the others by applying pre-planned non-prehensile actions to specific
object hypothesis [6,26,36]. However, the non-prehensile action, such as pushing,
for a specific object is challenging in cluttered environments due to inevitable
collisions with other surrounding objects. Our work utilizes both pushing and
grasping actions to facilitate object isolation from a clutter.

The SE3-Net [4] learns to segment distinct objects from raw scene point
clouds and predicts an object’s rigid motion, but it only considers up to 3 objects
in a less dense clutter. The closest works to our approach are Pathak et al. [32]
and Eitel et al. [11] that use grasping and pushing, respectively. However, both of
them require collision-free interactions to work effectively. [2] exploits motion cue
to differentiate the grasped novel objects from the manipulator and background
and gets single object annotation. However, in real cases, the model trained on
such data will not reach high performance in heavy clutter. Our Singulation-and-
Grasping (SaG) policy manages to solve the collision problem during grasping
and even obtains the pseudo ground truth annotations during the singulation
phase.
Pushing and Grasping Collaboration Synergistic behaviors between push-
ing and grasping have been well explored in [7,10,18,42,44]. The visual pushing
for grasping (VPG) [44] provides a model-free deep Q-learning framework to
jointly learn pushing and grasping policies, where the pushing action is applied
to facilitate future grasps. Both [18] and [42] use robust foreground segmenta-
tion methods, which track object location through interaction. In such a case,
the ground truth transformation for each object can be matched, and the re-
ward from measurements such as border occupancy ratio [10] can be designed
accordingly. [10] and [7] conduct grasps by actively exploring and making rear-
rangements of the environment until the rule-based grasp detect algorithm or the
DQN decide whether the goal object is suitable for grasping. Analogous to these
methods, the visual system in our work cannot provide robust tracking informa-
tion before and after the interaction, especially when the objects are previously
unseen. In such a case, the reward design for our DQN is much more challenging.
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Our system instead collects high quality data annotation rather than achieve a
simple object removal task.
Object Singulation Previous work [12] effectively solves the singulation prob-
lem but uses human-labeled pushing actions to train a push proposal network.
On the other hand, [17] selects pushing actions to verify if visible edges cor-
respond to proposed object boundaries without learning features. [35] and [23]
focus on the target-oriented object singulation problem, however, it is much more
challenging to train a singulation policy that separates all objects than a target-
oriented singulation policy that separates only one target object from a clutter.
As such, our approach focuses on an object-agnostic singulation problem.

3 Problem Formulation

We formulate the interactive object segmentation problem as follows:

Definition 1. Given multiple novel objects on a planar surface, the manipulator
executes pushing or grasping motion primitives based on the potentially noisy
segmentation results (e.g., under- or over-segments). The goal is to improve the
segmentation performance via fine-tuning with the data collected during robot-
object interactions.

To solve the interactive data collection problem, we divide the problem into
three subtasks:

Subtask 1 Given a pile of novel objects, the robot executes objects singulation
motions to separate them from each other to increase free space, facilitating
grasping actions later. We define this task as the object singulation task.

Subtask 2 Given a well-singulated scene where the pairwise distances of object
segments are above a threshold, the robot grasps and removes objects from the
scene. We define this task as the collision-free grasping task.

Subtask 3 Given the RGB images collected from the previous two subtasks,
the binary segmentation masks are generated by using a learned classifier and a
motion cue post-processing. We define this task as the mask generation task.

4 Method

We model the problem as a discrete Markov Decision Process (MDP) as in [44]
and [42]. Given a state st, the agent executes an action at according to the
trained policy π(st) and obtains the new state st+1 receiving a current reward
Rat

(st, st+1). The goal of our network is to obtain an action-value function
Qπ(st, at) that approximates the expected future return for each motion at.
We also introduce the Singulation-and-Grasping (SaG) pipeline, an interactive
data collection process, from which objects annotations are self-generated.
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Fig. 2. The SaG pipeline for interactive data collection. The deep Q-network
takes as input the state representation st, which consists of the orthographically pro-
jected RGB-D images (ct, dt) and object segmentation masks (ht,mt). The initially
cluttered objects are singulated and grasped via the SaG policy π. Both the scenes
of interaction and the task-relevant features are recorded to obtain object segment
annotations.

4.1 System Overview

As illustrated in Fig. 2, an RGB-D camera is affixed to the environment to pro-
vide visual information of the workspace. The original RGB-D image It at time t
is first segmented by a segmentation model to provide objectness hypotheses. In
this work, we use the UOIS segmentation model [40] taking the RGB and depth
images to make inferences. By treating each segmented connected component
{s1, s2, ..., sn} as a single object instance, we relabel the segmentation results
and get 2D instance center locations {c1, c2, ..., cm} based on their axis-aligned
bounding box coordinates.

We orthographically project the RGB, depth, segmentation hypotheses, and
the most cluttered mask in the gravity direction with known camera parameters
to get the color projection map ct ∈ RH×W×3, depth heightmap dt ∈ RH×W×1,
mask projection map ht ∈ RH×W×1, and the most cluttered mask projection
map mt ∈ RH×W×1 (see Section 4.2 for the details of mt). The mask projec-
tion map ht introduces the global clutter distribution information to the system,
while the most cluttered mask projection map mt highlights the possible tar-
get object that requires most effort to be singulated. This additional input mt

intuitively suggests removing the most cluttered area during singulation. Dur-
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ing the grasping stage, mt is set to an all-ones map. The state is represented
by st = (ct, dt, ht,mt) ∈ RH×W×6k, where we rotate the state representation k
times before feeding in the network to reason about multiple orientations for mo-
tions. We set k = 16 with a fixed step size of 22.5◦ w.r.t. the z-axis. The feature
extractor (a two-layer residual network block [16]) takes st as input and further
passes to a pre-trained DenseNet-121 [19]. The PushNet ϕp and GraspNet ϕg fi-
nally predict the Q-maps in which each pixel value represents the expected future
return if the motion is applied to the pixel location and the corresponding ori-
entation. To maximize the reward, the pushing and grasping motion primitives
are executed at the highest Q-value in the Q-maps [29,42,44].

4.2 Singulation-and-Grasping Pipeline

We use the singulation and collision-free grasping motion primitives as the main
interaction mechanism. The singulation policy and grasping policy are trained
in an multi-stage manner:

Stage I: Singulation Only Training. In this stage, we train the Push-
Net ϕp for object singulation. We initially form a densely-cluttered scene where
objects are close to each other. During the singulation stage, an undirected-
graph structure G = (V,E) is formed for each state st, where V := {1, ...,m},
E ⊂ V ×V and each node i ∈ V is represented by ci. The edge E is constructed
by the Euclidean distance between nodes. When the pairwise distance is under
a threshold p, an edge connects two nodes. We then find the most cluttered
mask from the segmentation hypothesis that corresponds to the largest number
of connected edges.

To effectively train the singulation policy via the PushNet ϕp, we need to
carefully design a reward function Rp. Existing target-oriented methods have a
strong assumption that a target object can be robustly detected in the course of
interactions [41,42]. We relax that assumption since the segmentation hypotheses
in ht is possibly noisy (i.e., over- or under-segments may exist) in the presence
of novel objects. In that case, it is challenging to robustly segment/track ob-
jects. Instead, we employ a set of surrogate measures. To represent the degree
of singulation of the scene, we obtain the graph density value [8] as

d(G) =
2|E|

|V |(|V | − 1)
(1)

where |E| represents the number of the edges and |V | is the number of the
vertices. For a cluttered scene, the vertices in the graph are highly connected,
and hence the density value d(G) is close to one. In contrast, when objects are
well singulated, the density value d(G) is close to zero.

A good singulation motion is supposed to create an end-effector trajectory
across the segmentation masks but also separate the under-segmented clutter,
resulting in a non-decreasing number of object masks. Additionally, effective mo-
tions should increase average pairwise distance between objects and decrease the
graph density d(G). We also consider a two-dimensional multivariate Gaussian
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distribution N fitted to the center locations of the object segments ci. The de-
terminant of the covariance matrix Σ of N indicates the sparsity of the spatial
distribution. Therefore, we design the pushing reward function as:

Rp =



-0.5, d(G) increases

0.25, pushing passes mask ht and

|{c1, ..., cm}|t+1 non-decreases

0.5, ad or avar increases

1.0, d(G) decreases or |Σ| increases

(2)

where ad and avar indicate the average and variance of the pairwise center lo-
cation distance, respectively. |{c1, ..., cm}|t+1 represents the number of instance
masks at time t+ 1. |Σ| represents the determinant of the covariance matrix Σ
of N .

Stage II: Grasping Only Training. In this stage, the parameters of the
pre-trained PushNet ϕp are fixed, and we mainly train the GraspNet ϕg with a
relatively scattered scene to simulate the scenarios where objects have already
been well singulated. Inspired by [44], we conduct object-agnostic grasping tasks
and use the reward function as follows:

Rg =

{
1.5, if grasping successfully

0, otherwise
(3)

Since the previous stage has created enough space for object-agnostic grasp-
ing, training a grasp-only policy maximizes the grasping success thanks to the
stage I.

Stage III: Coordination. In this stage, we combine the stage I and II as
the SaG policy π for pushing and grasping collaboration. The pushing action is
executed iteratively until the graph density value d(G) reaches zero or grasp trials
reaches the maximum pushing number, while the grasping action dominates
when the objects are well singulated.

Algorithm 1 summarizes the details of the SaG policy learning in Supple-
mentary Section A.1, and the training and implementation details can be found
at Supplementary Section A.2.

4.3 Mask Generation

Through SAG interactions, we self-generate object annotations to be used to
improve the segmentation model. Prior work [11] has explored the similar idea,
but it cannot filter out multi-object moving cases as it often generates inaccurate
training labels that negatively affects the transfer learning.

We propose a learning-based binary classifier to identify single object moving
cases using optical flow and apply a motion cue post-processing method on them.
The classifier takes optical flow and task relevant features as input and outputs
the single object moving probability. The task relevant features consist of graph
density d(G), average and variance of pairwise center location distance ad and
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avar, and target border occupancy ratio rb as defined in [42]. Since the training
data for the flow classifier is collected from simulation only and the real robot
setting has a domain gap from simulation, we consider such task relevant features
to help the classification. We obtain object’s ground truth location directly from
the simulation (V-REP [33]) and by comparing the object locations change. We
set the probability of single object movement to be 1 as the ground truth label
when only one object was moving and 0 otherwise.

We compute the optical flow using the FlowNet2 [20] with images It and
It+1 before and after executing the motion primitive at, respectively, and feed
the optical flow together with task relevant features to the classifier. Inspired
by [11], we use normalized graph cut on each optical flow to obtain a set of
segments in binary mask format Lt = {l1t , ..., lNt } for frame It, and we select
segment lnt ∈ Lt that satisfies related constraints (e.g., location, size). We add
the RGB image It and its corresponding binary mask lnt as a ground truth label
into the training dataset D = {(I0, ln0

0 ), ..., (It, l
nt
t )} for transfer learning.

4.4 Mask R-CNN Transfer Learning

We use the Mask R-CNN [15] model pre-trained on COCO instance segmenta-
tion dataset with the ResNet-50-FPN backbone implemented by Detectron2 [38].
It is a common practice to use a baseline model pre-trained on a well-annotated
standard image dataset, for instance ImageNet [34], where the backbone serves
as a universal feature extractor in the network. Moreover, the Feature Pyramid
Network (FPN) [15] type backbone extracts image features from different scales,
which provides better anchors prediction in various levels. We fine-tune the seg-
mentation model with the self-generated dataset D. The details of segmentation
results can be found at Section 5.

5 Experiments

In this section, we conduct multiple experiments to evaluate the proposed SaG
approach. The goals of the experiments are 1) to compare our SaG with several
baselines in both singulation and segmentation performances and 2) to show
whether the fine-tuned SaG segmentation model is effective and further appli-
cable to in other downstream robot manipulation tasks (e.g., grasping).

5.1 Datasets and Evaluation Metrics

SingulationWe evaluate our singulation performance in simulation with 6 basic
shape toy blocks. We conduct 200 test trials with various object arrangements for
the singulation task and record d(G) values. A trial is considered to be successful
when the pairwise distances between all objects are above a threshold p and d(G)
reaches zero within 8 pushes.
SegmentationWe collect 404 and 200 testing images for toy blocks and YCB [5]
objects in simulation. For default test setting, we randomly drop 10 toy blocks
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and 8 YCB objects in the workspace. Additionally, for cluttered test setting, we
increase the number of objects to 18 toy blocks and 15 YCB objects where all
objects are located in a dense pile. For real robot default testing, we manually
labeled 100 images with 6 to 8 objects in the workspace. In addition, 50 images
are labeled with up to 16 objects in a clutter for the cluttered test cases.

We evaluate the instance segmentation performance with the standard MS
COCO evaluation metric, average precision (AP). We also use another evalua-
tion metric as defined in [9] to compare current state-of-the-art non-interactive
segmentation method, where scores for segmentation instances are not provided
and cannot be evaluated with COCO AP. To compute the overlap precision,
recall, and F-measure (P/R/F), the Hungarian matching method is used for the
predicted and ground truth masks. Given the matching, the P/R/F are com-

puted by P =
∑

i|ai∩g(ai)|∑
i|ai| , R =

∑
i|ai∩g(ai)|∑

j |gj |
, F = 2PR

P+R , where ai denotes the set

of pixels belonging to predicted object i, g(ai) is the ground truth matched to
each predicted region, and gj denotes ground truth pixels of object j.

5.2 Singulation Performance

We utilize the simulation environment in V-REP [33] running a UR5 arm with an
RG2 gripper. Five baselines are compared with our approach: 1) SaG-maskall,
the baseline without the most cluttered object mask projection map mt and
filters the Q maps by the binary mask projection map ht, 2) SaG-maskone,
the baseline without the mt input and filters the Q maps with mt, 3) VPG,
target agnostic pushing and grasping to clean the cluttered objects [44]. 4) SaG
no mt, our proposed method without mt, and 5) SaG no ht, our proposed
method without ht.

Fig. 3 shows the average singulation success rate with different pairwise dis-
tance thresholds p from 6cm to 10cm versus the number of pushes. The pushing
motions achieve about 80% singulation success rate with the small threshold of
6cm and over 50% with the large threshold of 10cm after eight pushes.

To show that SaG is effective, we further conduct the five push-only baseline
comparisons mentioned above. We reuse the test cases when evaluating SaG
singulation success for each method. The average singulation success rate for
each baseline combines performance measurement with thresholds from 6cm to
10cm. Fig. 4 demonstrates that the VPG push-only method barely has the
object singulation effect. On the other hand, our proposed approach improves
the performance by a large margin about 60% after eight pushes. Although the
singulation task is target-agnostic, the results of SaG no mt and SaG no ht

show that providing the network with global and local clutter information helps
improve the overall performance. SaG-maskall may push objects that have
already been well singulated, resulting in an ineffective pushing policy. While
SaG-maskone always pushes the most cluttered mask, it lacks the global object
arrangement information, resulting in unsatisfactory performance as well.



10 H. Yu and C. Choi.

0 1 2 3 4 5 6 7 8
Number of pushes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Si
ng

ul
at

io
n

su
cc

es
s

ra
te

Threshold
6cm
7cm
8cm
9cm
10cm

Fig. 3. Singulation policy performance
with different distance thresholds.
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Table 1. Segmentation results in simulation with toy blocks. Ablation study on dif-
ferent architectures of SaG pipeline.

Method OPF
Default Cluttered

AP50 AP75 AP50:95 AP50 AP75 AP50:95

SaG (Ours) ✓ 98.7 96.6 87.8 88.6 81.0 73.0
SaG (Ours) 96.8 94.7 81.5 87.8 80.6 72.1
SaG no mt ✓ 98.3 95.9 81.6 86.1 78.2 69.1
SaG no ht ✓ 93.2 90.5 79.0 82.6 73.1 65.4
SaG grasp ✓ 97.1 94.5 83.4 86.8 79.7 71.7
SaG push ✓ 96.7 94.1 80.1 85.7 77.0 69.7
SaG push 94.2 92.0 77.7 85.5 76.9 68.2

SaG-maskone ✓ 98.0 95.7 86.0 87.3 77.9 70.5
SaG-maskall ✓ 97.9 95.7 86.0 85.6 77.1 69.5
VPG [44] ✓ 89.2 86.3 69.4 81.4 72.1 65.0

SelfDeepMask [11] ✓ 77.4 66.4 53.7 52.0 32.0 29.9
SelfDeepMask [11] 74.6 62.1 50.4 43.9 26.9 24.6
DeepMask [31] ✓ 71.9 48.0 41.1 50.4 31.4 29.3

SBI [32] 72.1 54.2 45.6 52.8 29.1 27.3

5.3 Interactive Segmentation

We evaluate the instance segmentation performance with transfer learning in
simulation. The Detectron2 COCO instance segmentation model with the ResNet-
50-FPN backbone [38] is used in our experiments. We fine-tune the model for
200, 250, and 150 iterations with 2000 toy blocks interactions, 2000 YCB ob-
jects interactions, and 1000 real robot novel objects interactions. Our models
are trained with the initial learning rate of 0.0005 with SGD for optimization.
Weight decay and momentum are set as 0.0001 and 0.9. All our models are
trained on a single NVIDIA RTX 2080 Ti.

Note that the push proposal network in SelfDeepMask [11] and the com-
plete data collection pipeline of Seg-by-Interaction (SBI) [32] are not re-
leased. We instead prepared the training data with our SaG policy and fine-
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SaG (Ours)SaG without flow filteringGT SelfDeepMaskRGB

Fig. 5. Basic toy blocks segmentation qualitative results. The top row is related to a
default test case and the bottom row is the highly cluttered test case.

tuned their corresponding segmentation models. While the baselines comparison
in such a way can be slightly unfair since we could not use their data collec-
tion methods, we followed their hyperparameter setting and the loss function
selections. For DeepMask [31] method, we fine-tune the pre-trained ResNet-50
DeepMask model for 10 epochs.

Toy Blocks Segmentation The quantitative results are in Table 1. We use the
standard COCO instance segmentation average precision (AP) for segmentation
evaluation. In Table 1, OPF denotes the use of optical flow filtering classifier.
Our proposed approach combining pushing and grasping interactions provides
the optimal performance of 87.8% in default setting and 73.0% in highly cluttered
setting, both in AP50:95. The SaG push method has relatively low performance
since the singulation policy often moves multiple objects simultaneously, creating
noisy labels. Our approach outperforms the compared baselines [11,31,32,44] by
large margins. Fig. 5 shows the visualization results.

Table 2. Segmentation results in simulation with YCB objects [5].

Method OPF
Default Cluttered

AP50 AP75 AP50:95 AP50 AP75 AP50:95

SaG (Ours) ✓ 92.9 82.8 73.9 84.7 66.8 61.7
SaG (Ours) 91.7 82.7 73.1 81.5 65.1 58.7

SelfDeepMask [11] ✓ 72.0 37.8 38.7 52.6 22.8 25.6
SelfDeepMask [11] 70.4 39.1 38.6 51.6 23.3 25.6
DeepMask [31] ✓ 69.8 28.2 33.6 51.3 18.9 23.6

SBI [32] 68.3 26.5 32.2 47.7 14.9 20.8

YCB Object Segmentation We also compare baselines with more challenging
objects in heavy clutter. The quantitative results are in Table 2. Our method
achieves 73.9% and 61.7% AP50:90 in default and cluttered test sets, respectively,
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SaG (Ours)SaG without flow filteringGT SelfDeepMaskRGB

Fig. 6. YCB objects segmentation qualitative results. The top row shows default test
setting and bottom row is the cluttered test case.

and outperforms other baselines by large margins. Segmentation visualization
can be found in Fig. 6.

5.4 SaG Downstream Robot Task Application

We evaluate the robotic top-down grasping task as one of the downstream tasks
in simulation. The grasping performance is defined as the grasping success rate
(%) over the last 1000 attempts. We compare the grasping success rate with VPG
[44] (no segmentation input at all), UOIS-VPG, and SaG-VPG, where UOIS-
VPG uses UOIS [40] as the segmentation model and SaG-VPG uses the fine-
tuned Mask-RCNN to provide object binary masks information as an additional
input. All three methods execute the grasping actions only and were trained from
scratch for 1000 epochs with 6 toy blocks. The experiment results in Table 3 show
that the SaG based segmentation model improves the grasping performance more
effectively.

Table 3. Top-down grasping success rate in simulation

Settings SaG-VPG UOIS-VPG VPG

6 toy blocks 85.5 78.9 70.7
10 toy blocks 78.4 73.8 61.3

5.5 Real Robot Experiments

We collect the training data via our SaG pipeline with a Franka Emika Panda
robot. The SaG policy is only trained in simulation and not fine-tuned in real-
robot setting. There are 41 different objects in the training set and 25 novel
objects in the default testing set as shown in Fig. 7.
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Table 4. Segmentation results on real robot.

Method OPF
Default Cluttered

AP50 AP75 AP50:95 AP50 AP75 AP50:95

SaG (Ours) ✓ 94.6 87.0 69.3 84.3 78.4 63.2
SaG (Ours) 88.1 80.0 61.1 85.3 78.3 62.5

SelfDeepMask [11] ✓ 79.9 57.7 51.3 70.7 51.9 43.8
SelfDeepMask [11] 74.1 53.3 47.1 69.3 50.6 43.1
DeepMask [31] ✓ 72.8 39.5 38.8 66.5 50.0 39.6

Table 5. SOTA comparison with the non-interactive approach on highly cluttered
unseen object segmentation.

Method
Overlap Boundary

P R F P R F

SaG (Ours) 91.4 89.5 90.4 79.3 81.2 80.1
UOIS [40] 70.8 76.7 73.6 38.5 73.6 50.3

The quantitative segmentation results with different AP thresholds are in
Table 4. Our approach outperforms SelfDeepMask and DeepMask by 14.7
and 21.8 average precision points (AP50) on default test cases, respectively. We
also compare our method with pre-trained UOIS [40] non-interactive approach
in Table 5.

The qualitative visualizations are in Fig. 8 and Fig. 9. The results show
that our segmentation model can be generalized to novel objects. Even in a
cluttered scene, our model manages to segment individual objects. Fig. 10 shows
the interactive segmentation in a push experiment, where the singulation motion
separating objects further contributes to the better segmentation performance.

6 Conclusions

We presented an interactive object segmentation method through the SaG policy
learning in the end-to-end deep Q-learning. The robot interacted with unseen
objects using pushing and grasping actions and automatically generated pseudo
ground truth annotations for further transfer learning. We showed our approach
outperforms all the compared baselines by large margins in both simulation and
real-robot experiments. Additionally, the proposed approach was applied to a
downstream robot manipulation task, object grasping.

Although effective, the current optical-flow based classifier lowers the data
collection efficiency. A future direction would learn a motion grouping method
that directly provides multiple ground truth masks from optical flow.
Acknowledgements: This work was supported in part by the Sony Research
Award Program and NSF Award 2143730.
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Training objects Testing objects

Fig. 7. Training and default testing object sets in real-robot experiments. The testing
objects are never seen during training process.

GT SaG (Ours)SaG without flow filteringSelfDeepMaskUOIS

Fig. 8. Highly cluttered test set visualization in real robot experiments.

RGB image SaG (Ours)SaG without flow filteringSelfDeepMaskDeepMask

Fig. 9. Visualizations of test cases (sparsely distributed, a cluttered scene, and piles of
objects).

𝑡! 𝑡" 𝑡# 𝑡$ 𝑡% 𝑡& 𝑡'

Fig. 10. Instance segmentation visualization with increasing number of pushes. Our
singulation policy helps improve the segmentation results by breaking the clutter.
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