Skip to main content

Master of All: Simultaneous Generalization of Urban-Scene Segmentation to All Adverse Weather Conditions

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13699))

Included in the following conference series:

Abstract

Computer vision systems for autonomous navigation must generalize well in adverse weather and illumination conditions expected in the real world. However, semantic segmentation of images captured in such conditions remains a challenging task for current state-of-the-art (SOTA) methods trained on broad daylight images, due to the associated distribution shift. On the other hand, domain adaptation techniques developed for the purpose rely on the availability of the source data, (un)labeled target data and/or its auxiliary information (e.g., GPS). Even then, they typically adapt to a single(specific) target domain(s). To remedy this, we propose a novel, fully test time, adaptation technique, named Master of ALL (MALL), for simultaneous generalization to multiple target domains. MALL learns to generalize on unseen adverse weather images from multiple target domains directly at the inference time. More specifically, given a pre-trained model and its parameters, MALL enforces edge consistency prior at the inference stage and updates the model based on (a) a single test sample at a time (MALL-sample), or (b) continuously for the whole test domain (MALL-domain). Not only the target data, MALL also does not need access to the source data and thus, can be used with any pre-trained model. Using a simple model pre-trained on daylight images, MALL outperforms specially designed adverse weather semantic segmentation methods, both in domain generalization and test-time adaptation settings. Our experiments on foggy, snow, night, cloudy, overcast, and rainy conditions demonstrate the target domain-agnostic effectiveness of our approach. We further show that MALL can improve the performance of a model on an adverse weather condition, even when the model is already pre-trained for the specific condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we do not assume the availability of source data as our method does not need any training for the chosen backbone. However, we do assume the availability of the statistics for the source dataset on which a given model is pre-trained on.

References

  1. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the permutohedral lattice. Comput. Graph. Forum 29, 753–762 (2010)

    Google Scholar 

  2. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: Global context networks. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2020). https://doi.org/10.1109/TPAMI.2020.3047209

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-Decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Chen, Y., Li, W., Van Gool, L.: Road: reality oriented adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7892–7901 (2018)

    Google Scholar 

  6. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: RobustNet: improving domain generalization in urban-scene segmentation via instance selective whitening. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11580–11590 (2021)

    Google Scholar 

  7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  8. Dai, D., Sakaridis, C., Hecker, S., Van Gool, L.: Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding. Int. J. Comput. Vis. 128(5), 1182–1204 (2020). https://doi.org/10.1007/s11263-019-01182-4

  9. Dai, D., Van Gool, L.: Dark model adaptation: semantic image segmentation from daytime to nighttime. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3819–3824. IEEE (2018)

    Google Scholar 

  10. Fan, M., et al.: Rethinking BiSeNet for real-time semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9716–9725 (2021)

    Google Scholar 

  11. Geusebroek, J.M., Van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1338–1350 (2001)

    Article  Google Scholar 

  12. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448. IEEE, Piscataway (2015)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  15. Howard, A., et al.: Searching for MobileNetV3. In: The IEEE International Conference on Computer Vision (ICCV), pp. 1314–1324, October 2019. https://doi.org/10.1109/ICCV.2019.00140

  16. Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J.: Interlaced sparse self-attention for semantic segmentation. arXiv preprint arXiv:1907.12273 (2019)

  17. Kim, M., Byun, H.: Learning texture invariant representation for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984 (2020)

    Google Scholar 

  18. Kundu, J.N., Kulkarni, A., Singh, A., Jampani, V., Babu, R.V.: Generalize then adapt: source-free domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 7046–7056, October 2021

    Google Scholar 

  19. Lengyel, A., Garg, S., Milford, M., van Gemert, J.C.: Zero-shot day-night domain adaptation with a physics prior. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4399–4409 (2021)

    Google Scholar 

  20. Li, Y., Yuan, L., Vasconcelos, N.: Bidirectional learning for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6936–6945 (2019)

    Google Scholar 

  21. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

    Google Scholar 

  22. Liu, Z., et al.: Open compound domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  24. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain shift: category-level adversaries for semantics consistent domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2507–2516 (2019)

    Google Scholar 

  25. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: enhancing learning and generalization capacities via IBN-Net. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 484–500. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_29

    Chapter  Google Scholar 

  26. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep representation learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1863–1871 (2019)

    Google Scholar 

  27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  28. Quiñonero-Candela, J., Sugiyama, M., Lawrence, N.D., Schwaighofer, A.: Dataset Shift in Machine Learning. MIT Press (2009)

    Google Scholar 

  29. Robey, A., Pappas, G.J., Hassani, H.: Model-based domain generalization. arXiv preprint arXiv:2102.11436 (2021)

  30. Romera, E., Bergasa, L.M., Yang, K., Alvarez, J.M., Barea, R.: Bridging the day and night domain gap for semantic segmentation. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1312–1318. IEEE (2019)

    Google Scholar 

  31. Sakaridis, C., Dai, D., Gool, L.V.: Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7374–7383 (2019)

    Google Scholar 

  32. Sakaridis, C., Dai, D., Hecker, S., Van Gool, L.: Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 707–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_42

    Chapter  Google Scholar 

  33. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vision 126(9), 973–992 (2018)

    Article  Google Scholar 

  34. Sakaridis, C., Dai, D., Van Gool, L.: Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  35. Sakaridis, C., Dai, D., Van Gool, L.: ACDC: the adverse conditions dataset with correspondences for semantic driving scene understanding. arXiv preprint arXiv:2104.13395 (2021)

  36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  37. Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S.N., Chellappa, R.: Learning from synthetic data: addressing domain shift for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3752–3761 (2018)

    Google Scholar 

  38. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  39. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  40. Sun, L., Wang, K., Yang, K., Xiang, K.: See clearer at night: towards robust nighttime semantic segmentation through day-night image conversion. In: Artificial Intelligence and Machine Learning in Defense Applications, vol. 11169, p. 111690A. International Society for Optics and Photonics (2019)

    Google Scholar 

  41. Sun, Y., Wang, X., Zhuang, L., Miller, J., Hardt, M., Efros, A.A.: Test-time training with self-supervision for generalization under distribution shifts. In: ICML (2020)

    Google Scholar 

  42. Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised CNN segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1818–1827 (2018)

    Google Scholar 

  43. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7472–7481 (2018)

    Google Scholar 

  44. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for structured output via discriminative patch representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1456–1465 (2019)

    Google Scholar 

  45. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  46. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: fully test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726 (2020)

  47. Wu, X., Wu, Z., Guo, H., Ju, L., Wang, S.: DanNet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15769–15778 (2021)

    Google Scholar 

  48. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. arXiv preprint arXiv:2105.15203 (2021)

  49. Yu, C., Gao, C., Wang, J., Yu, G., Shen, C., Sang, N.: BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation. Int. J. Comput. Vision 129(11), 3051–3068 (2021)

    Article  Google Scholar 

  50. Yu, F., et al.: BDD100K: a diverse driving dataset for heterogeneous multitask learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  51. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. arXiv preprint arXiv:2101.10979 (2021)

  52. Zhang, Y., Qiu, Z., Yao, T., Liu, D., Mei, T.: Fully convolutional adaptation networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6810–6818 (2018)

    Google Scholar 

  53. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vision 129(4), 1106–1120 (2021)

    Article  Google Scholar 

  54. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Deep domain-adversarial image generation for domain generalisation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13025–13032 (2020)

    Google Scholar 

  55. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

  56. Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18

    Chapter  Google Scholar 

  57. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)

    Google Scholar 

Download references

Acknowledgment

We thank UQ-IIT Delhi Research Academy (UQIDAR) for providing contingency grant. This work has also been partly supported by the funding received from DST through the IMPRINT program (IMP/2019/000250). We acknowledge National Super-computing Mission (NSM) for providing computing resources of ‘PARAM Siddhi-AI’, under National PARAM Super-computing Facility (NPSF), C-DAC, Pune, and supported by the Ministry of Electronics and Information Technology (MeitY) and Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Reddy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9088 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reddy, N., Singhal, A., Kumar, A., Baktashmotlagh, M., Arora, C. (2022). Master of All: Simultaneous Generalization of Urban-Scene Segmentation to All Adverse Weather Conditions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19842-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19841-0

  • Online ISBN: 978-3-031-19842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics