Abstract
Semantic segmentation of LiDAR point clouds is an important task in autonomous driving. However, training deep models via conventional supervised methods requires large datasets which are costly to label. It is critical to have label-efficient segmentation approaches to scale up the model to new operational domains or to improve performance on rare cases. While most prior works focus on indoor scenes, we are one of the first to propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds. Our method co-designs an efficient labeling process with semi/weakly supervised learning and is applicable to nearly any 3D semantic segmentation backbones. Specifically, we leverage geometry patterns in outdoor scenes to have a heuristic pre-segmentation to reduce the manual labeling and jointly design the learning targets with the labeling process. In the learning step, we leverage prototype learning to get more descriptive point embeddings and use multi-scan distillation to exploit richer semantics from temporally aggregated point clouds to boost the performance of single-scan models. Evaluated on the SemanticKITTI and the nuScenes datasets, we show that our proposed method outperforms existing label-efficient methods. With extremely limited human annotations (e.g., 0.1% point labels), our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
M. Liu—Work done during internship at Waymo LLC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alnaggar, Y.A., Afifi, M., Amer, K., ElHelw, M.: Multi projection fusion for real-time semantic segmentation of 3D lidar point clouds. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1800–1809 (2021)
Alonso, I., Riazuelo, L., Montesano, L., Murillo, A.C.: 3D-MiniNet: learning a 2D representation from point clouds for fast and efficient 3D LIDAR semantic segmentation. IEEE Rob. Autom. Lett. 5(4), 5432–5439 (2020)
Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2D–3D-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)
Behley, J., et al.: SemanticKITTI: a dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 9297–9307 (2019)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11621–11631 (2020)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)
Cheng, M., Hui, L., Xie, J., Yang, J., Kong, H.: Cascaded non-local neural network for point cloud semantic segmentation. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8447–8452. IEEE (2020)
Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: AF2-S3Net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12547–12556 (2021)
Cortinhal, T., Tzelepis, G., Erdal Aksoy, E.: SalsaNext: fast, uncertainty-aware semantic segmentation of LiDAR point clouds. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12510, pp. 207–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64559-5_16
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839 (2017)
Duerr, F., Pfaller, M., Weigel, H., Beyerer, J.: LiDAR-based recurrent 3D semantic segmentation with temporal memory alignment. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 781–790. IEEE (2020)
Elsayed, G.F., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep networks for classification. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)
Fang, Y., Xu, C., Cui, Z., Zong, Y., Yang, J.: Spatial transformer point convolution. arXiv preprint arXiv:2009.01427 (2020)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Gan, L., Zhang, R., Grizzle, J.W., Eustice, R.M., Ghaffari, M.: Bayesian spatial kernel smoothing for scalable dense semantic mapping. IEEE Rob. Autom. Lett. 5(2), 790–797 (2020)
Gao, B., Pan, Y., Li, C., Geng, S., Zhao, H.: Are we hungry for 3d lidar data for semantic segmentation? ArXiv abs/2006.04307 3, 20 (2020)
Gao, Y., Fei, N., Liu, G., Lu, Z., Xiang, T., Huang, S.: Contrastive prototype learning with augmented embeddings for few-shot learning. arXiv preprint arXiv:2101.09499 (2021)
Gerdzhev, M., Razani, R., Taghavi, E., Bingbing, L.: TORNADO-Net: mulTiview tOtal vaRiatioN semantic segmentAtion with diamond inceptiOn module. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 9543–9549. IEEE (2021)
Guinard, S., Landrieu, L.: Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds. In: ISPRS Workshop 2017 (2017)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9729–9738 (2020)
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: Advances in Neural Information Processing Systems (NeurIPS) (2015)
Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3D scene understanding with contrastive scene contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15587–15597 (2021)
Hu, Q., et al.: SQN: weakly-supervised semantic segmentation of large-scale 3D point clouds with 1000x fewer labels. arXiv preprint arXiv:2104.04891 (2021)
Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11108–11117 (2020)
Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)
Kochanov, D., Nejadasl, F.K., Booij, O.: KPRNet: improving projection-based lidar semantic segmentation. arXiv preprint arXiv:2007.12668 (2020)
Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4558–4567 (2018)
Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. In: Proceedings of the International Conference on Learning Representations (ICLR) (2020)
Li, S., Chen, X., Liu, Y., Dai, D., Stachniss, C., Gall, J.: Multi-scale interaction for real-time lidar data segmentation on an embedded platform. arXiv preprint arXiv:2008.09162 (2020)
Liong, V.E., Nguyen, T.N.T., Widjaja, S., Sharma, D., Chong, Z.J.: AMVNet: assertion-based multi-view fusion network for lidar semantic segmentation. arXiv preprint arXiv:2012.04934 (2020)
Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning (ICML), vol. 2, p. 7 (2016)
Liu, Z., Qi, X., Fu, C.W.: One thing one click: a self-training approach for weakly supervised 3D semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1726–1736 (2021)
Luo, H., et al.: Semantic labeling of mobile lidar point clouds via active learning and higher order MRF. IEEE Trans. Geosci. Remote Sens. 56(7), 3631–3644 (2018)
Mahajan, D., et al.: Exploring the limits of weakly supervised pretraining. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 185–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_12
Mei, J., Gao, B., Xu, D., Yao, W., Zhao, X., Zhao, H.: Semantic segmentation of 3D lidar data in dynamic scene using semi-supervised learning. IEEE Trans. Intell. Transp. Syst. 21(6), 2496–2509 (2019)
Mei, J., Zhao, H.: Incorporating human domain knowledge in 3-D LiDAR-based semantic segmentation. IEEE Transa. Intell. Veh. 5(2), 178–187 (2019)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 3111–3119 (2013)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: RangeNet++: fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4213–4220. IEEE (2019)
Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Pathak, D., Shelhamer, E., Long, J., Darrell, T.: Fully convolutional multi-class multiple instance learning. arXiv preprint arXiv:1412.7144 (2014)
Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1713–1721 (2015)
Razani, R., Cheng, R., Taghavi, E., Bingbing, L.: Lite-HDSeg: LiDAR semantic segmentation using lite harmonic dense convolutions. arXiv preprint arXiv:2103.08852 (2021)
Ren, Z., Misra, I., Schwing, A.G., Girdhar, R.: 3D spatial recognition without spatially labeled 3D. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13204–13213 (2021)
Rist, C.B., Schmidt, D., Enzweiler, M., Gavrila, D.M.: SCSSNet: learning spatially-conditioned scene segmentation on LiDAR point clouds. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1086–1093. IEEE (2020)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)
Shi, X., Xu, X., Chen, K., Cai, L., Foo, C.S., Jia, K.: Label-efficient point cloud semantic segmentation: an active learning approach. arXiv preprint arXiv:2101.06931 (2021)
Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)
Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1857–1865 (2016)
Tang, H., et al.: Searching efficient 3D architectures with sparse point-voxel convolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 685–702. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_41
Thomas, H., Agro, B., Gridseth, M., Zhang, J., Barfoot, T.D.: Self-supervised learning of lidar segmentation for autonomous indoor navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 14047–14053. IEEE (2021)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 6411–6420 (2019)
Wang, H., Rong, X., Yang, L., Feng, J., Xiao, J., Tian, Y.: Weakly supervised semantic segmentation in 3D graph-structured point clouds of wild scenes. arXiv preprint arXiv:2004.12498 (2020)
Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L.: Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4384–4393 (2020)
Wu, T.H., et al.: ReDAL: region-based and diversity-aware active learning for point cloud semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 15510–15519 (2021)
Xiao, A., Huang, J., Guan, D., Zhan, F., Lu, S.: SynLiDAR: learning from synthetic LiDAR sequential point cloud for semantic segmentation. arXiv preprint arXiv:2107.05399 (2021)
Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34
Xu, C., et al.: SqueezeSegV3: spatially-adaptive convolution for efficient point-cloud segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1
Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: RpvNet: a deep and efficient range-point-voxel fusion network for LiDAR point cloud segmentation. arXiv preprint arXiv:2103.12978 (2021)
Xu, K., Yao, Y., Murasaki, K., Ando, S., Sagata, A.: Semantic segmentation of sparsely annotated 3D point clouds by pseudo-labelling. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 463–471. IEEE (2019)
Xu, X., Lee, G.H.: Weakly supervised semantic point cloud segmentation: towards 10x fewer labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13706–13715 (2020)
Yan, X., et al.: Sparse single sweep LiDAR point cloud segmentation via learning contextual shape priors from scene completion. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2020)
Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3474–3482 (2018)
Zhang, F., Fang, J., Wah, B., Torr, P.: Deep FusionNet for point cloud semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 644–663. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_38
Zhang, Y., et al.: PolarNet: an improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9601–9610 (2020)
Zhao, N., Chua, T.S., Lee, G.H.: Few-shot 3D point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8873–8882 (2021)
Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Zhu, X., et al.: Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9939–9948 (2021)
Zou, Y., Weinacker, H., Koch, B.: Towards urban scene semantic segmentation with deep learning from LiDAR point clouds: a case study in Baden-Württemberg, Germany. Remote Sens. 13(16), 3220 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, M., Zhou, Y., Qi, C.R., Gong, B., Su, H., Anguelov, D. (2022). LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-19842-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19841-0
Online ISBN: 978-3-031-19842-7
eBook Packages: Computer ScienceComputer Science (R0)