Skip to main content

Runtime Verification of Correct-by-Construction Driving Maneuvers

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles (ISoLA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13701))

Included in the following conference series:

  • 749 Accesses

Abstract

Cyber-physical systems play an increasingly vital role in our everyday lives by leveraging technology to mitigate human error. These systems are inherently safety-critical, which requires the highest standards in quality assurance. Therefore, designing safe behaviors for these systems in a manageable fashion and maximizing trust early on by formally verifying them against a formal specification mandates a software engineering process that prioritizes appropriate abstractions in the early design phase. However, even if models are formally verified at design time, their appropriateness in the real world stills needs to be validated at runtime, as specifications are usually incomplete. In this work, we introduce a methodology for refining verified cyber-physical systems modeled by hybrid mode automata to executable source code amenable for runtime verification. In particular, we employ ArchiCorC, which lifts the correctness-by-construction paradigm for programs to component-based architectures, and comes with facilities for code generation. Subsequent simulations of the executable and verified maneuvers allow to validate their initial requirements in a diverse set of scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Further information on the syntax and semantics of hybrid programs beyond our application in this work can be found in A. Platzer’s textbook Logical Foundations of Cyber-Physical Systems [40].

  2. 2.

    https://github.com/AlexanderKnueppel/Skeditor.

References

  1. Alur, R.: Formal verification of hybrid systems. In: Proceedings of the International Conference on Embedded Software and Systems, pp. 273–278 (2011)

    Google Scholar 

  2. Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138(1), 3–34 (1995)

    Article  MathSciNet  Google Scholar 

  3. Angermann, A., Beuschel, M., Rau, M., Wohlfarth, U.: Matlab-simulink-stateflow. De Gruyter Oldenbourg (2020)

    Google Scholar 

  4. Bernardi, S., Gentile, U., Marrone, S., Merseguer, J., Nardone, R.: Security modelling and formal verification of survivability properties: application to cyber-physical systems. J. Syst. Softw. 171, 110746 (2021)

    Article  Google Scholar 

  5. Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time embedded systems. In: Proceedings of the International Workshop on Software and Performance (WOSP), pp. 115–124 (2007)

    Google Scholar 

  6. Bordis, T., Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Variational correctness-by-construction. In: Cordy, M., Acher, M., Beuche, D., Saake, G. (eds.) Proceedings of the International Working Conference on Variability Modelling of Software-Intensive Systems (VAMOS), pp. 7:1–7:9. ACM (2020). https://doi.org/10.1145/3377024.3377038

  7. Branicky, M.S.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems. Control Engineering, pp. 91–116. Birkhäuser, Boston (2005). https://doi.org/10.1007/0-8176-4404-0_5

  8. Buzdalov, D., Khoroshilov, A.: A discrete-event simulator for early validation of avionics systems. In: Proceedings of the Workshop on Architecture Centric Virtual Integration (ACVIP), p. 28 (2014)

    Google Scholar 

  9. Elmqvist, H., Mattsson, S.E., Otter, M.: Object-oriented and hybrid modeling in modelica. J. Eur. des systèmes automatisés 35(4), 395–404 (2001)

    Google Scholar 

  10. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston (2012)

    Google Scholar 

  11. France, R., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling notation. Comput. Stand. Interfaces 19(7), 325–334 (1998)

    Article  Google Scholar 

  12. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: the Systems Modeling Language. Morgan Kaufmann, San Francisco (2014)

    Google Scholar 

  13. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  14. GĂłmez, F.J., Aguilera, M.A., Olsen, S.H., Vanfretti, L.: Software requirements for interoperable and standard-based power system modeling tools. Simul. Model. Pract. Theory 103, 102095 (2020)

    Article  Google Scholar 

  15. Goswami, D., et al.: Challenges in automotive cyber-physical systems design, pp. 346–354 (2012). https://doi.org/10.1109/SAMOS.2012.6404199

  16. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp. 265–292. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5_13

  17. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

    Article  Google Scholar 

  18. Jue, W., Song, Y., Wu, X., Dai, W.: A semi-formal requirement modeling pattern for designing industrial cyber-physical systems. In: Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IES), vol. 1, pp. 2883–2888. IEEE (2019)

    Google Scholar 

  19. Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of a water treatment system. In: Proceedings of the International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 22–28. IEEE (2016)

    Google Scholar 

  20. Kittelmann, A.: Maneuver-centric formal engineering approach for cyber-physical systemsA. Ph.D. thesis, Braunschweig, Technische Universität Carolo-Wilhelmina zu Braunschweig (2022). https://doi.org/10.24355/dbbs.084-202204121019-0

  21. KnĂĽppel, A., Jatzkowski, I., Nolte, M., ThĂĽm, T., Runge, T., Schaefer, I.: Skill-based verification of cyber-physical systems. In: FASE 2020. LNCS, vol. 12076, pp. 203–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_10

    Chapter  Google Scholar 

  22. Knüppel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 187–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_10

    Chapter  Google Scholar 

  23. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)

    Google Scholar 

  24. Koubaa, A.: Robot Operating System (ROS). The Complete Reference (Volume 1) SCI, vol. 625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9

  25. Lee, I., et al.: Challenges and research directions in medical cyber-physical systems. Proc. IEEE 100(1), 75–90 (2012). https://doi.org/10.1109/JPROC.2011.2165270

    Article  Google Scholar 

  26. Lin, Q., Adepu, S., Verwer, S., Mathur, A.: Tabor: a graphical model-based approach for anomaly detection in industrial control systems. In: Proceedings of the Asia Conference on Computer and Communications Security (ASIACCS), pp. 525–536 (2018)

    Google Scholar 

  27. Mancini, T., et al.: Parallel statistical model checking for safety verification in smart grids. In: Proceedings of the International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6. IEEE (2018)

    Google Scholar 

  28. Maraninchi, F., Rémond, Y.: Mode-automata: about modes and states for reactive systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053571

    Chapter  Google Scholar 

  29. Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for the development of safe critical systems. Sci. Comput. Program. 46(3), 219–254 (2003)

    Article  Google Scholar 

  30. Michniewicz, J., Reinhart, G.: Cyber-physical robotics - automated analysis, programming and configuration of robot cells based on cyber-physical-systems. Proc. Technol. 15, 566–575 (2014). https://doi.org/10.1016/j.protcy.2014.09.017

  31. Misson, H.A., Gonçalves, F.S., Becker, L.B.: Applying integrated formal methods on cps design. In: Proceedings of the Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 1–8. IEEE (2019)

    Google Scholar 

  32. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-physical system models. Formal Methods Syst. Des. 49(1), 33–74 (2016)

    Article  Google Scholar 

  33. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W.: Towards cps verification engineering. In: Proceedings of the International Conference on Information Integration and Web-Based Applications & Services, pp. 367–371. iiWAS 2020, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3428757.3429146

  34. MĂĽller, A., Mitsch, S., Schwinger, W., Platzer, A.: A component-based hybrid systems verification and implementation tool in Keymaera x (tool demonstration). In: Chamberlain, R., Taha, W., Törngren, M. (eds.) CyPhy/WESE -2018. LNCS, vol. 11615, pp. 91–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23703-5_5

    Chapter  Google Scholar 

  35. Neghina, M., Zamfirescu, C.-B., Pierce, K.: Early-stage analysis of cyber-physical production systems through collaborative modelling. Softw. Syst. Model. 19(3), 581–600 (2019). https://doi.org/10.1007/s10270-019-00753-w

    Article  Google Scholar 

  36. Pagliari, L., Mirandola, R., Trubiani, C.: Engineering cyber-physical systems through performance-based modelling and analysis: a case study experience report. J. Softw. Evol. Process 32(1), e2179 (2020)

    Article  Google Scholar 

  37. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14509-4

  39. Platzer, A.: Logics of dynamical systems. In: Proceedings of the International Symposium on Logic in Computer Science (LICS), pp. 13–24. IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.13

  40. Platzer, A.: Logical Foundations of Cyber-physical Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63588-0

  41. Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II, vol. 1. Ptolemy.org Berkeley (2014)

    Google Scholar 

  42. Quigley, M., et al.: Ros: an open-source robot operating system. In: Procedings of the Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)

    Google Scholar 

  43. Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow control-by-construction for security-by-design, pp. 44–54. ACM (2020). https://doi.org/10.1145/3372020.3391565

  44. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_2

    Chapter  Google Scholar 

  45. Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: Foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013). https://doi.org/10.1109/JPROC.2012.2235131

    Article  Google Scholar 

  46. Seceleanu, C., et al.: Analyzing a wind turbine system: From simulation to formal verification. Sci. Comput. Program. 133, 216–242 (2017)

    Article  Google Scholar 

  47. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  48. Zhang, L.: Specifying and modeling automotive cyber physical systems. In: Proceedings of the International Conference on Computational Science and Engineering (CSE), pp. 603–610. IEEE (2013)

    Google Scholar 

  49. Zhang, L.: Modeling large scale complex cyber physical control systems based on system of systems engineering approach. In: Proceedings of the International Conference on Automation and Computing (ICAC), pp. 55–60. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kittelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kittelmann, A., Runge, T., Bordis, T., Schaefer, I. (2022). Runtime Verification of Correct-by-Construction Driving Maneuvers. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles. ISoLA 2022. Lecture Notes in Computer Science, vol 13701. Springer, Cham. https://doi.org/10.1007/978-3-031-19849-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19849-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19848-9

  • Online ISBN: 978-3-031-19849-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics