Abstract
Cyber-physical systems play an increasingly vital role in our everyday lives by leveraging technology to mitigate human error. These systems are inherently safety-critical, which requires the highest standards in quality assurance. Therefore, designing safe behaviors for these systems in a manageable fashion and maximizing trust early on by formally verifying them against a formal specification mandates a software engineering process that prioritizes appropriate abstractions in the early design phase. However, even if models are formally verified at design time, their appropriateness in the real world stills needs to be validated at runtime, as specifications are usually incomplete. In this work, we introduce a methodology for refining verified cyber-physical systems modeled by hybrid mode automata to executable source code amenable for runtime verification. In particular, we employ ArchiCorC, which lifts the correctness-by-construction paradigm for programs to component-based architectures, and comes with facilities for code generation. Subsequent simulations of the executable and verified maneuvers allow to validate their initial requirements in a diverse set of scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Further information on the syntax and semantics of hybrid programs beyond our application in this work can be found in A. Platzer’s textbook Logical Foundations of Cyber-Physical Systems [40].
- 2.
References
Alur, R.: Formal verification of hybrid systems. In: Proceedings of the International Conference on Embedded Software and Systems, pp. 273–278 (2011)
Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138(1), 3–34 (1995)
Angermann, A., Beuschel, M., Rau, M., Wohlfarth, U.: Matlab-simulink-stateflow. De Gruyter Oldenbourg (2020)
Bernardi, S., Gentile, U., Marrone, S., Merseguer, J., Nardone, R.: Security modelling and formal verification of survivability properties: application to cyber-physical systems. J. Syst. Softw. 171, 110746 (2021)
Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time embedded systems. In: Proceedings of the International Workshop on Software and Performance (WOSP), pp. 115–124 (2007)
Bordis, T., Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Variational correctness-by-construction. In: Cordy, M., Acher, M., Beuche, D., Saake, G. (eds.) Proceedings of the International Working Conference on Variability Modelling of Software-Intensive Systems (VAMOS), pp. 7:1–7:9. ACM (2020). https://doi.org/10.1145/3377024.3377038
Branicky, M.S.: Introduction to hybrid systems. In: Hristu-Varsakelis, D., Levine, W.S. (eds.) Handbook of Networked and Embedded Control Systems. Control Engineering, pp. 91–116. Birkhäuser, Boston (2005). https://doi.org/10.1007/0-8176-4404-0_5
Buzdalov, D., Khoroshilov, A.: A discrete-event simulator for early validation of avionics systems. In: Proceedings of the Workshop on Architecture Centric Virtual Integration (ACVIP), p. 28 (2014)
Elmqvist, H., Mattsson, S.E., Otter, M.: Object-oriented and hybrid modeling in modelica. J. Eur. des systèmes automatisés 35(4), 395–404 (2001)
Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley, Boston (2012)
France, R., Evans, A., Lano, K., Rumpe, B.: The UML as a formal modeling notation. Comput. Stand. Interfaces 19(7), 325–334 (1998)
Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: the Systems Modeling Language. Morgan Kaufmann, San Francisco (2014)
Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36
GĂłmez, F.J., Aguilera, M.A., Olsen, S.H., Vanfretti, L.: Software requirements for interoperable and standard-based power system modeling tools. Simul. Model. Pract. Theory 103, 102095 (2020)
Goswami, D., et al.: Challenges in automotive cyber-physical systems design, pp. 346–354 (2012). https://doi.org/10.1109/SAMOS.2012.6404199
Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp. 265–292. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-5_13
Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)
Jue, W., Song, Y., Wu, X., Dai, W.: A semi-formal requirement modeling pattern for designing industrial cyber-physical systems. In: Proceedings of the Annual Conference of the IEEE Industrial Electronics Society (IES), vol. 1, pp. 2883–2888. IEEE (2019)
Kang, E., Adepu, S., Jackson, D., Mathur, A.P.: Model-based security analysis of a water treatment system. In: Proceedings of the International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pp. 22–28. IEEE (2016)
Kittelmann, A.: Maneuver-centric formal engineering approach for cyber-physical systemsA. Ph.D. thesis, Braunschweig, Technische Universität Carolo-Wilhelmina zu Braunschweig (2022). https://doi.org/10.24355/dbbs.084-202204121019-0
Knüppel, A., Jatzkowski, I., Nolte, M., Thüm, T., Runge, T., Schaefer, I.: Skill-based verification of cyber-physical systems. In: FASE 2020. LNCS, vol. 12076, pp. 203–223. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45234-6_10
Knüppel, A., Runge, T., Schaefer, I.: Scaling correctness-by-construction. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp. 187–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4_10
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)
Koubaa, A.: Robot Operating System (ROS). The Complete Reference (Volume 1) SCI, vol. 625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9
Lee, I., et al.: Challenges and research directions in medical cyber-physical systems. Proc. IEEE 100(1), 75–90 (2012). https://doi.org/10.1109/JPROC.2011.2165270
Lin, Q., Adepu, S., Verwer, S., Mathur, A.: Tabor: a graphical model-based approach for anomaly detection in industrial control systems. In: Proceedings of the Asia Conference on Computer and Communications Security (ASIACCS), pp. 525–536 (2018)
Mancini, T., et al.: Parallel statistical model checking for safety verification in smart grids. In: Proceedings of the International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), pp. 1–6. IEEE (2018)
Maraninchi, F., Rémond, Y.: Mode-automata: about modes and states for reactive systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053571
Maraninchi, F., Rémond, Y.: Mode-automata: a new domain-specific construct for the development of safe critical systems. Sci. Comput. Program. 46(3), 219–254 (2003)
Michniewicz, J., Reinhart, G.: Cyber-physical robotics - automated analysis, programming and configuration of robot cells based on cyber-physical-systems. Proc. Technol. 15, 566–575 (2014). https://doi.org/10.1016/j.protcy.2014.09.017
Misson, H.A., Gonçalves, F.S., Becker, L.B.: Applying integrated formal methods on cps design. In: Proceedings of the Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 1–8. IEEE (2019)
Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-physical system models. Formal Methods Syst. Des. 49(1), 33–74 (2016)
Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W.: Towards cps verification engineering. In: Proceedings of the International Conference on Information Integration and Web-Based Applications & Services, pp. 367–371. iiWAS 2020, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3428757.3429146
Müller, A., Mitsch, S., Schwinger, W., Platzer, A.: A component-based hybrid systems verification and implementation tool in Keymaera x (tool demonstration). In: Chamberlain, R., Taha, W., Törngren, M. (eds.) CyPhy/WESE -2018. LNCS, vol. 11615, pp. 91–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23703-5_5
Neghina, M., Zamfirescu, C.-B., Pierce, K.: Early-stage analysis of cyber-physical production systems through collaborative modelling. Softw. Syst. Model. 19(3), 581–600 (2019). https://doi.org/10.1007/s10270-019-00753-w
Pagliari, L., Mirandola, R., Trubiani, C.: Engineering cyber-physical systems through performance-based modelling and analysis: a case study experience report. J. Softw. Evol. Process 32(1), e2179 (2020)
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8
Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14509-4
Platzer, A.: Logics of dynamical systems. In: Proceedings of the International Symposium on Logic in Computer Science (LICS), pp. 13–24. IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.13
Platzer, A.: Logical Foundations of Cyber-physical Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63588-0
Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II, vol. 1. Ptolemy.org Berkeley (2014)
Quigley, M., et al.: Ros: an open-source robot operating system. In: Procedings of the Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)
Runge, T., Knüppel, A., Thüm, T., Schaefer, I.: Lattice-based information flow control-by-construction for security-by-design, pp. 44–54. ACM (2020). https://doi.org/10.1145/3372020.3391565
Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6_2
Sampigethaya, K., Poovendran, R.: Aviation cyber-physical systems: Foundations for future aircraft and air transport. Proc. IEEE 101(8), 1834–1855 (2013). https://doi.org/10.1109/JPROC.2012.2235131
Seceleanu, C., et al.: Analyzing a wind turbine system: From simulation to formal verification. Sci. Comput. Program. 133, 216–242 (2017)
Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40
Zhang, L.: Specifying and modeling automotive cyber physical systems. In: Proceedings of the International Conference on Computational Science and Engineering (CSE), pp. 603–610. IEEE (2013)
Zhang, L.: Modeling large scale complex cyber physical control systems based on system of systems engineering approach. In: Proceedings of the International Conference on Automation and Computing (ICAC), pp. 55–60. IEEE (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kittelmann, A., Runge, T., Bordis, T., Schaefer, I. (2022). Runtime Verification of Correct-by-Construction Driving Maneuvers. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Verification Principles. ISoLA 2022. Lecture Notes in Computer Science, vol 13701. Springer, Cham. https://doi.org/10.1007/978-3-031-19849-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-19849-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19848-9
Online ISBN: 978-3-031-19849-6
eBook Packages: Computer ScienceComputer Science (R0)