Skip to main content

On the Decomposability of Homogeneous Binary Planar Configurations with Respect to a Given Exact Polyomino

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

Abstract

A binary planar configuration A associates to each point in \(\mathbb {Z}^2\) an element in \(\{0,1\}\). Provided a finite window probe P, we locally inspect A by moving P in all its possible positions and counting the 1s elements that fit inside it. In case all the computed values have the same value k, then we say that A is k-homogeneous w.r.t. P. A recent conjecture states that a binary planar configuration is k-homogeneous with respect to an exact polyomino P, i.e., a polyomino that tiles the plane by translation, if and only if it can be decomposed into k configurations that are 1-homogeneous with respect to P. In this paper we define a class of exact polyominoes called perfect pseudo-squares (\(\mathcal {PPS}\)) and we investigate the periodicity behaviors of the homogeneous configurations that are related to them. Then, we show that some elements in \(\mathcal {PPS}\) allow 2-homogeneous or 3-homogeneous non-decomposable planar configurations, so providing evidence that the conjecture does not hold for the whole class of exact polyominoes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this study, we include in the class of periodic tilings also those called half-periodic in [2].

References

  1. Battaglino, D., Frosini, A., Rinaldi, S.: A decomposition theorem for homogeneous sets with respect to diamond probes. Comput. Vis. Image Underst. 17, 319–325 (2013)

    Article  Google Scholar 

  2. Beauquier, D., Nivat, M.: On translating one polyomino to tile the plane. Discret. Comput. Geom. 6, 575–592 (1991)

    Article  MathSciNet  Google Scholar 

  3. Blondin Massé, A., Brlek, S., Labbé, S.: A parallelogram tile fills the plane by translation in at most two distinct ways. Discret. Appl. Math. 170(7–8), 1011–1018 (2012)

    Article  MathSciNet  Google Scholar 

  4. Blondin Massé, A., Garon, A., Labbé, S.: Combinatorial properties of double square tiles. Theor. Comput. Sci. 502, 98–117 (2013)

    Article  MathSciNet  Google Scholar 

  5. Freeman, H.: Boundary encoding and processing. In: Lipkin, B., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics, pp. 241–266. Academic Press, New York (1970)

    Google Scholar 

  6. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 10, 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  7. Frosini, A., Nivat, M.: On a tomographic equivalence between \((0, 1)\)-matrices. Pure Math. Appl. 16(3), 1–15 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Frosini, A., Nivat, M.: Binary matrices under the microscope: a tomographical problem. Theor. Comput. Sci. 370, 201–217 (2007)

    Article  MathSciNet  Google Scholar 

  9. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  10. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

    Article  MathSciNet  Google Scholar 

  11. Nivat, M., Sous-ensembles homogènes de \(\mathbb{Z}^{2}\) et pavages du plan. C.R. Acad. Sci. Paris. Ser. I 335, 83–86 (2002)

    Google Scholar 

  12. Nivat, M.: Invited talk at ICALP97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Ascolese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ascolese, M., Frosini, A. (2022). On the Decomposability of Homogeneous Binary Planar Configurations with Respect to a Given Exact Polyomino. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics