Skip to main content

Properties of SAT Formulas Characterizing Convex Sets with Given Projections

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

Abstract

One of the most interesting and challenging problems in Discrete Tomography concerns the faithful reconstruction of an unknown finite discrete set from its horizontal and vertical projections. The computational complexity of this problem has been considered and solved in case of horizontal and vertical convex polyominoes, by coding the possible solutions through a 2-SAT formula. On the other hand, the problem is still open in case of (full) convex polyominoes. As a matter of fact, the previous polynomial-time reconstruction strategy does not naturally generalize to them. In particular, it has been observed that the convexity constraint on polyominoes involves, in general, a k-SAT formula \(\varphi \), preventing, up to now, the polynomiality of the entire process, assuming that \(P \ne NP\). Our studies focus on the clauses of \(\varphi \). We show that they can be reduced to 2-SAT or 3-SAT only and that a subset of the variables involved in the reconstruction may appear in the 3-SAT clauses of \(\varphi \), thus detecting some situations that lead to a polynomial time reconstruction. Some examples of situations where 3-SAT formulas arise are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barcucci, E., Del Lungo, A., Nivat, M., Pinzani, R.: Reconstructing convex polyominoes from horizontal and vertical projections. Theor. Comput. Sci. 155(2), 321–347 (1996)

    Article  MathSciNet  Google Scholar 

  2. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.V.: Combinatorics on Words: Christoffel Words and Repetitions in Words. Mathematical Society, Amer (2009)

    MATH  Google Scholar 

  3. Borel, J.-P., Laubie, F.: Quelques mots sur la droite projective réelle. J. Théor. Nombres Bordeaux 5(1), 23–51 (1993)

    Article  MathSciNet  Google Scholar 

  4. Brlek, S., Lachaud, J.O., Provençal, X., Reutenauer, C.: Lyndon + Christoffel= digitally convex. Pattern Recogn. 42(10), 2239–2246 (2009)

    Article  Google Scholar 

  5. Del Lungo, A., Nivat, M., Pinzani, R.: The number of convex polyominoes reconstructible from their orthogonal projections. Discrete Math. 157(1–3), 65–78 (1996)

    Article  MathSciNet  Google Scholar 

  6. Dulio, P., Frosini, A.: On some geometric aspects of the class of hv-convex switching components. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) Discrete Geometry and Mathematical Morphology. DGMM 2021 Lecture Notes in Computer Science, vol. 12708, pp. 1–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_21

    Chapter  Google Scholar 

  7. Dulio, P., Frosini, A.: Characterization of hv-convex sequences. J. Math. Imaging Vis. 64, 771–785 (2022)

    Article  MathSciNet  Google Scholar 

  8. Dulio, P., Frosini, A., Rinaldi, S., Tarsissi, L., Vuillon, L.: Further steps on the reconstruction of convex polyominoes from orthogonal projections. J. Comb, Optim. 1–20 (2021)

    Google Scholar 

  9. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. \(EC-10\), 2, 260–268 (1961)

    Google Scholar 

  10. Frosini, A., Vuillon, L.: Tomographic reconstruction of 2-convex polyominoes using dual horn clauses. Theoret. Comput. Sc. 777(2), 329–337 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gerard, Y.: Regular switching components. Theoret. Comput. Sci. 777, 338–355 (2019)

    Article  MathSciNet  Google Scholar 

  12. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations Algorithms and Applications. Birkhauser, Boston (1999)

    MATH  Google Scholar 

  13. Kadu, A., van Leeuwen, T.: A convex formulation for binary tomography. IEEE Trans. Comput. Imaging 6, 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  14. Kocay, W., Li, P.C.: On \(3\)-hypergraphs with equal degree sequences. Ars Combin. 82, 145–157 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Tasi, T.S., Nyúl, L.G., Balázs, P.: Directional convexity measure for binary tomography. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol. 8259, pp. 1–13 (2013). https://doi.org/10.1007/978-3-642-41827-3_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niccolò Di Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marco, N.D., Frosini, A. (2022). Properties of SAT Formulas Characterizing Convex Sets with Given Projections. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics