Skip to main content

Hybrid Artificial Intelligence for Knowledge Representation and Model-Based Medical Image Understanding - Towards Explainability

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13493))

  • 487 Accesses

Abstract

In this paper, we advocate that combining several frameworks in artificial intelligence, adopting a hybrid point of view for both knowledge data representation and reasoning, offers opportunities towards explainability. This idea is illustrated on the example of image understanding, in particular in medical imaging, formulated as a spatial reasoning problem.

This work was partly supported by the author’s chair in Artificial Intelligence (Sorbonne Université and SCAI). A part of the work mentioned in this paper was performed while the author was with LTCI, Télécom Paris, Institut Polytechnique de Paris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These are only examples and similar approaches have been developed in other application domains, such as satellite imaging, video, music representations, etc.

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (ed.).: Handbook of Spatial Logic. Springer, Cham (2007). https://doi.org/10.1007/978-1-4020-5587-4

  2. Aiguier, M., Atif, J., Bloch, I., Pino Pérez, R.: Explanatory relations in arbitrary logics based on satisfaction systems, cutting and retraction. Int. J. Approximate Reasoning 102, 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aldea, E., Bloch, I.: Toward a better integration of spatial relations in learning with graphical models. In: H. Briand, F. Guillet, G.R., Zighed, D. (eds.) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol. 292. pp. 77–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-00580-0_5

  4. Atif, J., Hudelot, C., Fouquier, G., Bloch, I., Angelini, E.: From Generic Knowledge to Specific Reasoning for Medical Image Interpretation using Graph-based Representations. In: International Joint Conference on Artificial Intelligence IJCAI 2007, pp. 224–229. Hyderabad, India (2007)

    Google Scholar 

  5. Bloch, I.: On fuzzy spatial distances. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 128, pp. 51–122. Elsevier, Amsterdam (2003)

    Google Scholar 

  6. Bloch, I.: Fuzzy spatial relationships for image processing and interpretation: a review. Image Vision Comput. 23(2), 89–110 (2005)

    Article  Google Scholar 

  7. Bloch, I.: Spatial reasoning under imprecision using fuzzy set theory, formal logics and mathematical morphology. Int. J. Approximate Reasoning 41(2), 77–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloch, I.: Mathematical morphology and spatial reasoning: fuzzy and bipolar setting. TWMS J. Pure Appl. Math. 12(1), 104–125 (2021). Special Issue on Fuzzy Sets in Dealing with Imprecision and Uncertainty: Past and Future Dedicated to the memory of Lotfi A. Zadeh

    MathSciNet  MATH  Google Scholar 

  9. Bloch, I.: Modeling imprecise and bipolar algebraic and topological relations using morphological dilations. Math. Morphol. Theory Appl. 5(1), 1–20 (2021)

    MATH  Google Scholar 

  10. Bloch, I., Géraud, T., Maître, H.: Representation and fusion of heterogeneous fuzzy information in the 3D space for model-based structural recognition - application to 3D brain imaging. Artif. Intell. 148, 141–175 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bloch, I., Lang, J., Pino Pérez, R., Uzcátegui, C.: Morphologic for knowledge dynamics: revision, fusion, abduction. Technical report arXiv:1802.05142, arXiv cs.AI (2018)

  12. Cesar, R., Bengoetxea, E., Bloch, I., Larranaga, P.: Inexact graph matching for model-based recognition: evaluation and comparison of optimization algorithms. Pattern Recognit. 38, 2099–2113 (2005)

    Article  Google Scholar 

  13. Chopin, J., Fasquel, J.B., Mouchère, H., Dahyot, R., Bloch, I.: Improving semantic segmentation with graph-based structural knowledge. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds.) International Conference on Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol. 13363, pp. 173–184. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09037-0_15

  14. Colliot, O., Camara, O., Bloch, I.: Integration of fuzzy spatial relations in deformable models - application to brain MRI segmentation. Pattern Recognit. 39, 1401–1414 (2006)

    Article  Google Scholar 

  15. Coradeschi, S., Saffiotti, A.: Anchoring symbols to vision data by fuzzy logic. In: Hunter, A., Parsons, S. (eds.) ECSQARU’99. LNCS, vol. 1638, pp. 104–115. Springer, London (1999)

    Google Scholar 

  16. Coste-Marquis, S., Marquis, P.: From explanations to intelligible explanations. In: 1st International Workshop on Explainable Logic-Based Knowledge Representation (XLoKR 2020) (2020)

    Google Scholar 

  17. Couteaux, V., et al.: Automatic knee meniscus tear detection and orientation classification with Mask-RCNN. Diagn. Interv. Imaging 100, 235–242 (2019)

    Article  Google Scholar 

  18. De Raedt, L., Dumancic, S., Manhaeve, R., Marra, G.: From statistical relational to neuro-symbolic artificial intelligence. In: Bessiere, C. (ed.) Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4943–4950 (2020)

    Google Scholar 

  19. Delmonte, A., Mercier, C., Pallud, J., Bloch, I., Gori, P.: White matter multi-resolution segmentation using fuzzy set theory. In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 459–462. Venice, Italy (2019)

    Google Scholar 

  20. Denis, C., Varenne, F.: Interprétabilité et explicabilité de phénomènes prédits par de l’apprentissage machine. Rev. Ouverte Intell. Artif. 3, 287–310 (2022)

    Google Scholar 

  21. Deruyver, A., Hodé, Y.: Constraint satisfaction problem with bilevel constraint: application to interpretation of over-segmented images. Artif. Intell. 93(1–2), 321–335 (1997)

    Google Scholar 

  22. Fasquel, J., Delanoue, N.: A graph based image interpretation method using a priori qualitative inclusion and photometric relationships. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1043–1055 (2019)

    Article  Google Scholar 

  23. Fouquier, G., Atif, J., Bloch, I.: Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations. Comput. Vis. Image Underst. 116(1), 146–165 (2012)

    Article  Google Scholar 

  24. Freeman, J.: The modelling of spatial relations. Comput. Graph. Image Process. 4(2), 156–171 (1975)

    Article  Google Scholar 

  25. d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. CoRR abs/2012.05876 (2020)

    Google Scholar 

  26. Garnelo, M., Shanahan, M.: Reconciling deep learning with symbolic artificial intelligence: representing objects and relations. Curr. Opin. Behav. Sci. 29, 17–23 (2019)

    Article  Google Scholar 

  27. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

    Article  MATH  Google Scholar 

  28. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part II: explanations. Br. J. Philos. Sci. 56(4), 889–911 (2005)

    Article  MATH  Google Scholar 

  29. Harnad, S.: The symbol grounding problem. Physica 42, 335–346 (1990)

    Google Scholar 

  30. Hudelot, C., Atif, J., Bloch, I.: Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst. 159, 1929–1951 (2008)

    Article  MathSciNet  Google Scholar 

  31. Kahneman, D.: Thinking. Fast and Slow, Penguin, New York (2012)

    Google Scholar 

  32. Kautz, H.: The third AI summer: AAAI Robert S. Engelmore Memorial Lect. AI Mag. 43(1), 93–104 (2022)

    Google Scholar 

  33. Landini, G., Galton, A., Randell, D., Fouad., S.: Novel applications of discrete mereotopology to mathematical morphology: signal processing: image communications 76, 109–117 (2019)

    Google Scholar 

  34. Marcus, G.: The next decade in AI: four steps towards robust artificial intelligence. CoRR abs/2002.06177 (2020)

    Google Scholar 

  35. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Miller, T.: Contrastive explanation: a structural-model approach. Knowl. Eng. Rev. 36, E14 (2021)

    Article  Google Scholar 

  37. Nempont, O., Atif, J., Bloch, I.: A constraint propagation approach to structural model based image segmentation and recognition. Inf. Sci. 246, 1–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Perchant, A., Bloch, I.: Fuzzy morphisms between graphs. Fuzzy Sets Syst. 128(2), 149–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic based on Regions and Connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning KR’92, pp. 165–176. Kaufmann, San Mateo, CA (1992)

    Google Scholar 

  40. Schockaert, S., De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy region connection calculus: representing vague topological information. Int. J. Approximate Reasoning 48(1), 314–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schockaert, S., De Cock, M., Kerre, E.E.: Spatial reasoning in a fuzzy region connection calculus. Artif. Intell. 173(2), 258–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Smeulders, A., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  43. Virzi, A., et al.: Segmentation of pelvic vessels in pediatric MRI using a patch-based deep learning approach. In: Melbourne, A., et al. (eds.) PIPPI/DATRA -2018. LNCS, vol. 11076, pp. 97–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00807-9_10

    Chapter  Google Scholar 

  44. Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., Yu, S.: A survey on incorporating domain knowledge into deep learning for medical image analysis. Med. Image Anal. 69, 101985 (2021)

    Article  Google Scholar 

  45. Yang, Y., Atif, J., Bloch, I.: Abductive reasoning using tableau methods for high-level image interpretation. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 356–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_34

    Chapter  Google Scholar 

  46. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  47. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to emphasize that the ideas summarized in this paper benefited from many joint works with post-doctoral researchers and PhD candidates, with colleagues in universities and research centers in several countries, with university hospitals, and with industrial partners. Thanks to all of them!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bloch, I. (2022). Hybrid Artificial Intelligence for Knowledge Representation and Model-Based Medical Image Understanding - Towards Explainability. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics